Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine how much an investment of \[tex]$570 will be worth in 10 years with a continuous compound interest rate of 4% per year, we use the continuous compound interest formula:
\[ A = P e^{rt} \]
where:
- \( P \) is the principal amount (initial investment), which is \$[/tex]570.
- [tex]\( r \)[/tex] is the annual interest rate (expressed as a decimal), which is 0.04 (since 4% = 4/100 = 0.04).
- [tex]\( t \)[/tex] is the time the money is invested for, which is 10 years.
- [tex]\( e \)[/tex] is the base of the natural logarithm (approximately equal to 2.71828).
We can substitute the values into the formula:
[tex]\[ A = 570 \cdot e^{0.04 \cdot 10} \][/tex]
First, we calculate the exponent:
[tex]\[ 0.04 \cdot 10 = 0.4 \][/tex]
Next, we compute [tex]\( e^{0.4} \)[/tex].
After finding the value of [tex]\( e^{0.4} \)[/tex], we then multiply this by the principal amount:
[tex]\[ A = 570 \cdot e^{0.4} \][/tex]
Finally, we get the approximate value for [tex]\( A \)[/tex]. When computed, the final value is approximately \[tex]$850.34. Therefore, the investment will be worth approximately \$[/tex]850.34 in 10 years. The correct answer from the options given is:
[tex]\[ \$ 850.34 \][/tex]
- [tex]\( r \)[/tex] is the annual interest rate (expressed as a decimal), which is 0.04 (since 4% = 4/100 = 0.04).
- [tex]\( t \)[/tex] is the time the money is invested for, which is 10 years.
- [tex]\( e \)[/tex] is the base of the natural logarithm (approximately equal to 2.71828).
We can substitute the values into the formula:
[tex]\[ A = 570 \cdot e^{0.04 \cdot 10} \][/tex]
First, we calculate the exponent:
[tex]\[ 0.04 \cdot 10 = 0.4 \][/tex]
Next, we compute [tex]\( e^{0.4} \)[/tex].
After finding the value of [tex]\( e^{0.4} \)[/tex], we then multiply this by the principal amount:
[tex]\[ A = 570 \cdot e^{0.4} \][/tex]
Finally, we get the approximate value for [tex]\( A \)[/tex]. When computed, the final value is approximately \[tex]$850.34. Therefore, the investment will be worth approximately \$[/tex]850.34 in 10 years. The correct answer from the options given is:
[tex]\[ \$ 850.34 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.