Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve the given system of linear equations step-by-step:
[tex]\[ \begin{cases} x + 2y = 12 \\ y = -3x + 11 \end{cases} \][/tex]
Step 1: Express one variable in terms of the other.
From the second equation, we already have [tex]\( y \)[/tex] expressed in terms of [tex]\( x \)[/tex]:
[tex]\[ y = -3x + 11 \][/tex]
Step 2: Substitute this expression into the first equation.
Substitute [tex]\( y = -3x + 11 \)[/tex] into the first equation:
[tex]\[ x + 2(-3x + 11) = 12 \][/tex]
Step 3: Simplify and solve for [tex]\( x \)[/tex].
Distribute the 2 through the equation:
[tex]\[ x + 2(-3x) + 2(11) = 12 \][/tex]
[tex]\[ x - 6x + 22 = 12 \][/tex]
Combine like terms:
[tex]\[ -5x + 22 = 12 \][/tex]
Isolate [tex]\( x \)[/tex] by subtracting 22 from both sides:
[tex]\[ -5x = 12 - 22 \][/tex]
[tex]\[ -5x = -10 \][/tex]
Divide both sides by -5:
[tex]\[ x = 2 \][/tex]
Step 4: Substitute [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex].
Now that we have [tex]\( x = 2 \)[/tex], substitute it into the expression for [tex]\( y \)[/tex]:
[tex]\[ y = -3(2) + 11 \][/tex]
[tex]\[ y = -6 + 11 \][/tex]
[tex]\[ y = 5 \][/tex]
Step 5: State the solution.
The solution to the system of equations is:
[tex]\[ (x, y) = (2, 5) \][/tex]
So, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations are [tex]\( x = 2 \)[/tex] and [tex]\( y = 5 \)[/tex].
[tex]\[ \begin{cases} x + 2y = 12 \\ y = -3x + 11 \end{cases} \][/tex]
Step 1: Express one variable in terms of the other.
From the second equation, we already have [tex]\( y \)[/tex] expressed in terms of [tex]\( x \)[/tex]:
[tex]\[ y = -3x + 11 \][/tex]
Step 2: Substitute this expression into the first equation.
Substitute [tex]\( y = -3x + 11 \)[/tex] into the first equation:
[tex]\[ x + 2(-3x + 11) = 12 \][/tex]
Step 3: Simplify and solve for [tex]\( x \)[/tex].
Distribute the 2 through the equation:
[tex]\[ x + 2(-3x) + 2(11) = 12 \][/tex]
[tex]\[ x - 6x + 22 = 12 \][/tex]
Combine like terms:
[tex]\[ -5x + 22 = 12 \][/tex]
Isolate [tex]\( x \)[/tex] by subtracting 22 from both sides:
[tex]\[ -5x = 12 - 22 \][/tex]
[tex]\[ -5x = -10 \][/tex]
Divide both sides by -5:
[tex]\[ x = 2 \][/tex]
Step 4: Substitute [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex].
Now that we have [tex]\( x = 2 \)[/tex], substitute it into the expression for [tex]\( y \)[/tex]:
[tex]\[ y = -3(2) + 11 \][/tex]
[tex]\[ y = -6 + 11 \][/tex]
[tex]\[ y = 5 \][/tex]
Step 5: State the solution.
The solution to the system of equations is:
[tex]\[ (x, y) = (2, 5) \][/tex]
So, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations are [tex]\( x = 2 \)[/tex] and [tex]\( y = 5 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.