Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which of the given statements is true, we will evaluate each statement step-by-step.
1. First statement: [tex]\(\frac{5}{6} > \frac{10}{12}\)[/tex]
Let's compare the two fractions [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{10}{12}\)[/tex]:
[tex]\[ \frac{10}{12} = \frac{5 \times 2}{6 \times 2} = \frac{5}{6} \][/tex]
So, [tex]\(\frac{5}{6} = \frac{10}{12}\)[/tex]. Thus, the statement [tex]\(\frac{5}{6} > \frac{10}{12}\)[/tex] is false.
2. Second statement: [tex]\(\frac{1}{4} > \frac{1}{3}\)[/tex]
Let's compare the two fractions [tex]\(\frac{1}{4}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex] by finding a common denominator. The lowest common denominator of 4 and 3 is 12.
[tex]\[ \frac{1}{4} = \frac{1 \times 3}{4 \times 3} = \frac{3}{12} \][/tex]
[tex]\[ \frac{1}{3} = \frac{1 \times 4}{3 \times 4} = \frac{4}{12} \][/tex]
Thus, [tex]\(\frac{3}{12} < \frac{4}{12}\)[/tex]. Therefore, [tex]\(\frac{1}{4} < \frac{1}{3}\)[/tex], making the statement [tex]\(\frac{1}{4} > \frac{1}{3}\)[/tex] false.
3. Third statement: [tex]\(\frac{6}{9} = \frac{1}{3}\)[/tex]
Let's simplify [tex]\(\frac{6}{9}\)[/tex]:
[tex]\[ \frac{6}{9} = \frac{6 \div 3}{9 \div 3} = \frac{2}{3} \][/tex]
Comparing [tex]\(\frac{2}{3}\)[/tex] with [tex]\(\frac{1}{3}\)[/tex], we can see that they are not equal. Therefore, the statement [tex]\(\frac{6}{9} = \frac{1}{3}\)[/tex] is false.
4. Fourth statement: [tex]\(\frac{13}{15} > \frac{4}{5}\)[/tex]
Let's compare the two fractions [tex]\(\frac{13}{15}\)[/tex] and [tex]\(\frac{4}{5}\)[/tex]:
First, convert [tex]\(\frac{4}{5}\)[/tex] to have a denominator of 15:
[tex]\[ \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15} \][/tex]
Now, we compare [tex]\(\frac{13}{15}\)[/tex] and [tex]\(\frac{12}{15}\)[/tex]:
[tex]\[ \frac{13}{15} > \frac{12}{15} \][/tex]
So, the statement [tex]\(\frac{13}{15} > \frac{4}{5}\)[/tex] is true.
Therefore, the only true statement is the fourth one: [tex]\(\frac{13}{15} > \frac{4}{5}\)[/tex].
1. First statement: [tex]\(\frac{5}{6} > \frac{10}{12}\)[/tex]
Let's compare the two fractions [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{10}{12}\)[/tex]:
[tex]\[ \frac{10}{12} = \frac{5 \times 2}{6 \times 2} = \frac{5}{6} \][/tex]
So, [tex]\(\frac{5}{6} = \frac{10}{12}\)[/tex]. Thus, the statement [tex]\(\frac{5}{6} > \frac{10}{12}\)[/tex] is false.
2. Second statement: [tex]\(\frac{1}{4} > \frac{1}{3}\)[/tex]
Let's compare the two fractions [tex]\(\frac{1}{4}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex] by finding a common denominator. The lowest common denominator of 4 and 3 is 12.
[tex]\[ \frac{1}{4} = \frac{1 \times 3}{4 \times 3} = \frac{3}{12} \][/tex]
[tex]\[ \frac{1}{3} = \frac{1 \times 4}{3 \times 4} = \frac{4}{12} \][/tex]
Thus, [tex]\(\frac{3}{12} < \frac{4}{12}\)[/tex]. Therefore, [tex]\(\frac{1}{4} < \frac{1}{3}\)[/tex], making the statement [tex]\(\frac{1}{4} > \frac{1}{3}\)[/tex] false.
3. Third statement: [tex]\(\frac{6}{9} = \frac{1}{3}\)[/tex]
Let's simplify [tex]\(\frac{6}{9}\)[/tex]:
[tex]\[ \frac{6}{9} = \frac{6 \div 3}{9 \div 3} = \frac{2}{3} \][/tex]
Comparing [tex]\(\frac{2}{3}\)[/tex] with [tex]\(\frac{1}{3}\)[/tex], we can see that they are not equal. Therefore, the statement [tex]\(\frac{6}{9} = \frac{1}{3}\)[/tex] is false.
4. Fourth statement: [tex]\(\frac{13}{15} > \frac{4}{5}\)[/tex]
Let's compare the two fractions [tex]\(\frac{13}{15}\)[/tex] and [tex]\(\frac{4}{5}\)[/tex]:
First, convert [tex]\(\frac{4}{5}\)[/tex] to have a denominator of 15:
[tex]\[ \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15} \][/tex]
Now, we compare [tex]\(\frac{13}{15}\)[/tex] and [tex]\(\frac{12}{15}\)[/tex]:
[tex]\[ \frac{13}{15} > \frac{12}{15} \][/tex]
So, the statement [tex]\(\frac{13}{15} > \frac{4}{5}\)[/tex] is true.
Therefore, the only true statement is the fourth one: [tex]\(\frac{13}{15} > \frac{4}{5}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.