Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find all the real zeros of the polynomial [tex]\( P(x) = x^4 - 9x^3 + 10x^2 + 27x + 7 \)[/tex], we need to solve the equation [tex]\( P(x) = 0 \)[/tex]. Here’s a detailed, step-by-step solution:
1. Identify the polynomial:
[tex]\[ P(x) = x^4 - 9x^3 + 10x^2 + 27x + 7 \][/tex]
2. Solve [tex]\( P(x) = 0 \)[/tex] for [tex]\( x \)[/tex]:
We are looking for the values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( x^4 - 9x^3 + 10x^2 + 27x + 7 = 0 \)[/tex].
3. Find rational roots:
We check if there are any obvious rational roots using techniques like the Rational Root Theorem. For brevity, let's proceed with the result:
4. Factorize or use other methods to find roots:
By solving the polynomial equation, we obtain the following roots for [tex]\( x \)[/tex]:
- [tex]\( x = -1 \)[/tex]
- [tex]\( x = 7 \)[/tex]
- [tex]\( x = \frac{3}{2} - \frac{\sqrt{13}}{2} \)[/tex]
- [tex]\( x = \frac{3}{2} + \frac{\sqrt{13}}{2} \)[/tex]
5. Verification:
To confirm these roots, you can substitute each back into the polynomial [tex]\( P(x) \)[/tex] to ensure [tex]\( P(x) = 0 \)[/tex].
Hence, the real zeros of the polynomial [tex]\( P(x) = x^4 - 9x^3 + 10x^2 + 27x + 7 \)[/tex] are:
[tex]\[ x = -1, 7, \frac{3}{2} - \frac{\sqrt{13}}{\2}, \frac{3}{2} + \frac{\sqrt{13}}{\2} \][/tex]
These are all the real zeros of the given polynomial.
1. Identify the polynomial:
[tex]\[ P(x) = x^4 - 9x^3 + 10x^2 + 27x + 7 \][/tex]
2. Solve [tex]\( P(x) = 0 \)[/tex] for [tex]\( x \)[/tex]:
We are looking for the values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( x^4 - 9x^3 + 10x^2 + 27x + 7 = 0 \)[/tex].
3. Find rational roots:
We check if there are any obvious rational roots using techniques like the Rational Root Theorem. For brevity, let's proceed with the result:
4. Factorize or use other methods to find roots:
By solving the polynomial equation, we obtain the following roots for [tex]\( x \)[/tex]:
- [tex]\( x = -1 \)[/tex]
- [tex]\( x = 7 \)[/tex]
- [tex]\( x = \frac{3}{2} - \frac{\sqrt{13}}{2} \)[/tex]
- [tex]\( x = \frac{3}{2} + \frac{\sqrt{13}}{2} \)[/tex]
5. Verification:
To confirm these roots, you can substitute each back into the polynomial [tex]\( P(x) \)[/tex] to ensure [tex]\( P(x) = 0 \)[/tex].
Hence, the real zeros of the polynomial [tex]\( P(x) = x^4 - 9x^3 + 10x^2 + 27x + 7 \)[/tex] are:
[tex]\[ x = -1, 7, \frac{3}{2} - \frac{\sqrt{13}}{\2}, \frac{3}{2} + \frac{\sqrt{13}}{\2} \][/tex]
These are all the real zeros of the given polynomial.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.