Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
When analyzing a polynomial equation such as [tex]\( x^5 = -2x^2 \)[/tex]:
1. Rewrite the equation: Set all terms to one side of the equation to form a standard polynomial equation. This gives us:
[tex]\[ x^5 + 2x^2 = 0 \][/tex]
2. Factor the equation: To solve for [tex]\( x \)[/tex], factor out the common term. Here, both terms share a common factor of [tex]\( x^2 \)[/tex]:
[tex]\[ x^2(x^3 + 2) = 0 \][/tex]
3. Set each factor to zero: To find the roots of the equation, set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 = 0 \quad \text{or} \quad x^3 + 2 = 0 \][/tex]
- Solving [tex]\( x^2 = 0 \)[/tex] gives:
[tex]\[ x = 0 \][/tex]
- Solving [tex]\( x^3 + 2 = 0 \)[/tex] gives:
[tex]\[ x^3 = -2 \implies x = \sqrt[3]{-2} \approx -1.2599 \][/tex]
4. Verify the number of distinct solutions: From the above, the roots of the polynomial equation are:
[tex]\[ x = 0 \quad \text{(a double root)} \quad \text{and} \quad x \approx -1.2599 \][/tex]
Thus, when Josh graphs the system of equations, he identifies two solutions. This is correct because the solutions to the equation [tex]\( x^5 = -2x^2 \)[/tex] include [tex]\( x = 0 \)[/tex] (which, despite being a double root, is counted as a single distinct intersection point) and [tex]\( x \approx -1.2599 \)[/tex], leading to a total of two points of intersection when viewed graphically. Therefore, his conclusion based on the graph is accurate.
1. Rewrite the equation: Set all terms to one side of the equation to form a standard polynomial equation. This gives us:
[tex]\[ x^5 + 2x^2 = 0 \][/tex]
2. Factor the equation: To solve for [tex]\( x \)[/tex], factor out the common term. Here, both terms share a common factor of [tex]\( x^2 \)[/tex]:
[tex]\[ x^2(x^3 + 2) = 0 \][/tex]
3. Set each factor to zero: To find the roots of the equation, set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 = 0 \quad \text{or} \quad x^3 + 2 = 0 \][/tex]
- Solving [tex]\( x^2 = 0 \)[/tex] gives:
[tex]\[ x = 0 \][/tex]
- Solving [tex]\( x^3 + 2 = 0 \)[/tex] gives:
[tex]\[ x^3 = -2 \implies x = \sqrt[3]{-2} \approx -1.2599 \][/tex]
4. Verify the number of distinct solutions: From the above, the roots of the polynomial equation are:
[tex]\[ x = 0 \quad \text{(a double root)} \quad \text{and} \quad x \approx -1.2599 \][/tex]
Thus, when Josh graphs the system of equations, he identifies two solutions. This is correct because the solutions to the equation [tex]\( x^5 = -2x^2 \)[/tex] include [tex]\( x = 0 \)[/tex] (which, despite being a double root, is counted as a single distinct intersection point) and [tex]\( x \approx -1.2599 \)[/tex], leading to a total of two points of intersection when viewed graphically. Therefore, his conclusion based on the graph is accurate.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.