Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Which function has an inverse that is also a function?

A. [tex]\( g(x) = 2x - 3 \)[/tex]
B. [tex]\( k(x) = -9x^2 \)[/tex]
C. [tex]\( f(x) = |x + 2| \)[/tex]
D. [tex]\( w(x) = -20 \)[/tex]


Sagot :

To determine which of the given functions have inverses that are also functions, let's analyze each of them one by one.

1. Function [tex]\( g(x) = 2x - 3 \)[/tex]:
- This is a linear function. Linear functions are bijective when the slope is non-zero (which it is in this case since the slope is 2). A bijective function has an inverse that is also a function.
- The inverse of [tex]\( g(x) \)[/tex] can be found as follows:
[tex]\[ y = 2x - 3 \implies x = \frac{y + 3}{2} \implies g^{-1}(y) = \frac{y + 3}{2} \][/tex]
- Thus, [tex]\( g(x) \)[/tex] has an inverse that is also a function.

2. Function [tex]\( k(x) = -9x^2 \)[/tex]:
- This is a quadratic function and is not one-to-one because for any positive value of [tex]\( x \)[/tex], [tex]\( k(x) \)[/tex] yields the same value as for the corresponding negative value of [tex]\( x \)[/tex]. Quadratic functions generally do not have inverses that are functions without restricting the domain.
- Since [tex]\( k(x) \)[/tex] is not one-to-one over all real numbers, it does not have an inverse that is a function.

3. Function [tex]\( f(x) = |x + 2| \)[/tex]:
- This is an absolute value function. Absolute value functions are not one-to-one because they map both [tex]\( x \)[/tex] and [tex]\( -x \)[/tex] to the same value.
- For instance, [tex]\( f(0) = |0 + 2| = 2 \)[/tex] and [tex]\( f(-4) = |-4 + 2| = 2 \)[/tex].
- As a result, [tex]\( f(x) \)[/tex] does not have an inverse that is a function.

4. Function [tex]\( w(x) = -20 \)[/tex]:
- This is a constant function, mapping every [tex]\( x \)[/tex] to the same value, -20. Constant functions are not bijective because they are not one-to-one.
- Therefore, [tex]\( w(x) \)[/tex] does not have an inverse that is a function.

Based on this analysis, only the function [tex]\( g(x) = 2x - 3 \)[/tex] has an inverse that is also a function.