Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the problem step-by-step to find the two consecutive odd integers whose product is 99.
1. Define the integers:
Let the first odd integer be [tex]\( x \)[/tex].
The next consecutive odd integer would then be [tex]\( x + 2 \)[/tex].
2. Set up the equation:
According to the problem, the product of these two integers is 99. This can be written as:
[tex]\[ x \times (x + 2) = 99 \][/tex]
3. Form a quadratic equation:
Expanding the product, we get:
[tex]\[ x^2 + 2x = 99 \][/tex]
Rearrange this to form a standard quadratic equation:
[tex]\[ x^2 + 2x - 99 = 0 \][/tex]
4. Solve the quadratic equation:
To find the values of [tex]\( x \)[/tex], we use the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -99 \)[/tex].
5. Calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot (-99) = 4 + 396 = 400 \][/tex]
6. Find the roots:
[tex]\[ x = \frac{{-2 \pm \sqrt{400}}}{2} = \frac{{-2 \pm 20}}{2} \][/tex]
This gives us two solutions:
[tex]\[ x_1 = \frac{{-2 + 20}}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ x_2 = \frac{{-2 - 20}}{2} = \frac{-22}{2} = -11 \][/tex]
7. Select the positive integer:
Since we are asked to provide the positive integers only, we choose [tex]\( x = 9 \)[/tex].
8. Find the next consecutive odd integer:
The next consecutive odd integer is [tex]\( x + 2 = 9 + 2 = 11 \)[/tex].
Therefore, the two consecutive odd integers whose product is 99 are [tex]\( \boxed{9 \text{ and } 11} \)[/tex].
1. Define the integers:
Let the first odd integer be [tex]\( x \)[/tex].
The next consecutive odd integer would then be [tex]\( x + 2 \)[/tex].
2. Set up the equation:
According to the problem, the product of these two integers is 99. This can be written as:
[tex]\[ x \times (x + 2) = 99 \][/tex]
3. Form a quadratic equation:
Expanding the product, we get:
[tex]\[ x^2 + 2x = 99 \][/tex]
Rearrange this to form a standard quadratic equation:
[tex]\[ x^2 + 2x - 99 = 0 \][/tex]
4. Solve the quadratic equation:
To find the values of [tex]\( x \)[/tex], we use the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -99 \)[/tex].
5. Calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot (-99) = 4 + 396 = 400 \][/tex]
6. Find the roots:
[tex]\[ x = \frac{{-2 \pm \sqrt{400}}}{2} = \frac{{-2 \pm 20}}{2} \][/tex]
This gives us two solutions:
[tex]\[ x_1 = \frac{{-2 + 20}}{2} = \frac{18}{2} = 9 \][/tex]
[tex]\[ x_2 = \frac{{-2 - 20}}{2} = \frac{-22}{2} = -11 \][/tex]
7. Select the positive integer:
Since we are asked to provide the positive integers only, we choose [tex]\( x = 9 \)[/tex].
8. Find the next consecutive odd integer:
The next consecutive odd integer is [tex]\( x + 2 = 9 + 2 = 11 \)[/tex].
Therefore, the two consecutive odd integers whose product is 99 are [tex]\( \boxed{9 \text{ and } 11} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.