Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex] that passes through the points [tex]\((2, 3)\)[/tex] and [tex]\((5, 7)\)[/tex], follow these steps:
1. Calculate the slope [tex]\(m\)[/tex]:
The slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the given points [tex]\((2, 3)\)[/tex] and [tex]\((5, 7)\)[/tex]:
[tex]\[ m = \frac{7 - 3}{5 - 2} = \frac{4}{3} \][/tex]
2. Find the y-intercept [tex]\(b\)[/tex]:
The y-intercept [tex]\(b\)[/tex] can be found using the slope-intercept form [tex]\(y = mx + b\)[/tex]. We can substitute one of the given points into the equation to solve for [tex]\(b\)[/tex]. Let's use the point [tex]\((2, 3)\)[/tex]:
[tex]\[ 3 = \left(\frac{4}{3}\right) \cdot 2 + b \][/tex]
Simplify the equation:
[tex]\[ 3 = \frac{8}{3} + b \][/tex]
To isolate [tex]\(b\)[/tex], subtract [tex]\(\frac{8}{3}\)[/tex] from both sides:
[tex]\[ 3 - \frac{8}{3} = b \][/tex]
Converting 3 to a fraction with a denominator of 3:
[tex]\[ \frac{9}{3} - \frac{8}{3} = b \quad \Rightarrow \quad \frac{1}{3} = b \][/tex]
So, [tex]\(b = \frac{1}{3}\)[/tex].
3. Write the equation of the line:
Now that we have the slope [tex]\(m = \frac{4}{3}\)[/tex] and the y-intercept [tex]\(b = \frac{1}{3}\)[/tex], we can write the equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y = \frac{4}{3}x + \frac{1}{3} \][/tex]
Therefore, the equation of the line passing through the points [tex]\((2, 3)\)[/tex] and [tex]\((5, 7)\)[/tex] is:
[tex]\[ y = \frac{4}{3}x + \frac{1}{3} \][/tex]
1. Calculate the slope [tex]\(m\)[/tex]:
The slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the given points [tex]\((2, 3)\)[/tex] and [tex]\((5, 7)\)[/tex]:
[tex]\[ m = \frac{7 - 3}{5 - 2} = \frac{4}{3} \][/tex]
2. Find the y-intercept [tex]\(b\)[/tex]:
The y-intercept [tex]\(b\)[/tex] can be found using the slope-intercept form [tex]\(y = mx + b\)[/tex]. We can substitute one of the given points into the equation to solve for [tex]\(b\)[/tex]. Let's use the point [tex]\((2, 3)\)[/tex]:
[tex]\[ 3 = \left(\frac{4}{3}\right) \cdot 2 + b \][/tex]
Simplify the equation:
[tex]\[ 3 = \frac{8}{3} + b \][/tex]
To isolate [tex]\(b\)[/tex], subtract [tex]\(\frac{8}{3}\)[/tex] from both sides:
[tex]\[ 3 - \frac{8}{3} = b \][/tex]
Converting 3 to a fraction with a denominator of 3:
[tex]\[ \frac{9}{3} - \frac{8}{3} = b \quad \Rightarrow \quad \frac{1}{3} = b \][/tex]
So, [tex]\(b = \frac{1}{3}\)[/tex].
3. Write the equation of the line:
Now that we have the slope [tex]\(m = \frac{4}{3}\)[/tex] and the y-intercept [tex]\(b = \frac{1}{3}\)[/tex], we can write the equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y = \frac{4}{3}x + \frac{1}{3} \][/tex]
Therefore, the equation of the line passing through the points [tex]\((2, 3)\)[/tex] and [tex]\((5, 7)\)[/tex] is:
[tex]\[ y = \frac{4}{3}x + \frac{1}{3} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.