Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step:
1. Define the variables and the given conditions:
- Let [tex]\( w \)[/tex] be the width of the garden.
- The length of the garden is specified to be four feet less than twice the width, so we can express the length [tex]\( l \)[/tex] as:
[tex]\[ l = 2w - 4 \][/tex]
- The area of the rectangular garden is given as 200 square feet. The area [tex]\( A \)[/tex] of a rectangle is calculated as:
[tex]\[ A = l \times w \][/tex]
Substituting the given area, we get:
[tex]\[ lw = 200 \][/tex]
2. Substitute the expression for [tex]\( l \)[/tex] into the area equation:
[tex]\[ (2w - 4)w = 200 \][/tex]
3. Distribute and set up the equation:
[tex]\[ 2w^2 - 4w = 200 \][/tex]
4. Rearrange the equation into standard quadratic form:
[tex]\[ 2w^2 - 4w - 200 = 0 \][/tex]
5. To simplify, divide the entire equation by 2:
[tex]\[ w^2 - 2w - 100 = 0 \][/tex]
6. Solve the quadratic equation using the quadratic formula:
The quadratic formula is given by:
[tex]\[ w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( w^2 - 2w - 100 = 0 \)[/tex], we have [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -100 \)[/tex].
Plugging these values into the quadratic formula:
[tex]\[ w = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-100)}}{2(1)} \][/tex]
[tex]\[ w = \frac{2 \pm \sqrt{4 + 400}}{2} \][/tex]
[tex]\[ w = \frac{2 \pm \sqrt{404}}{2} \][/tex]
[tex]\[ w = \frac{2 \pm 2\sqrt{101}}{2} \][/tex]
[tex]\[ w = 1 \pm \sqrt{101} \][/tex]
7. Determine the feasible value for [tex]\( w \)[/tex]:
We have two potential solutions:
[tex]\[ w = 1 + \sqrt{101} \][/tex]
[tex]\[ w = 1 - \sqrt{101} \][/tex]
Since the width must be a positive value, we discard [tex]\( w = 1 - \sqrt{101} \)[/tex]. Thus:
[tex]\[ w = 1 + \sqrt{101} \][/tex]
8. Calculate the corresponding length:
Recall that the length [tex]\( l \)[/tex] is:
[tex]\[ l = 2w - 4 \][/tex]
Substituting [tex]\( w = 1 + \sqrt{101} \)[/tex]:
[tex]\[ l = 2(1 + \sqrt{101}) - 4 \][/tex]
[tex]\[ l = 2 + 2\sqrt{101} - 4 \][/tex]
[tex]\[ l = 2\sqrt{101} - 2 \][/tex]
9. Round the final answers to the nearest tenth:
- First, approximate [tex]\( \sqrt{101} \)[/tex]:
[tex]\[ \sqrt{101} \approx 10.05 \][/tex]
- Then use it to approximate [tex]\( w \)[/tex] and [tex]\( l \)[/tex]:
[tex]\[ w \approx 1 + 10.05 = 11.05 \Rightarrow \text{Rounded } w \approx 11.1 \][/tex]
[tex]\[ l \approx 2 \times 10.05 - 2 = 20.1 - 2 = 18.1 \Rightarrow \text{Rounded } l \approx 18.1 \][/tex]
Therefore, the width of the garden is approximately [tex]\( 11.1 \)[/tex] feet, and the length of the garden is approximately [tex]\( 18.1 \)[/tex] feet.
1. Define the variables and the given conditions:
- Let [tex]\( w \)[/tex] be the width of the garden.
- The length of the garden is specified to be four feet less than twice the width, so we can express the length [tex]\( l \)[/tex] as:
[tex]\[ l = 2w - 4 \][/tex]
- The area of the rectangular garden is given as 200 square feet. The area [tex]\( A \)[/tex] of a rectangle is calculated as:
[tex]\[ A = l \times w \][/tex]
Substituting the given area, we get:
[tex]\[ lw = 200 \][/tex]
2. Substitute the expression for [tex]\( l \)[/tex] into the area equation:
[tex]\[ (2w - 4)w = 200 \][/tex]
3. Distribute and set up the equation:
[tex]\[ 2w^2 - 4w = 200 \][/tex]
4. Rearrange the equation into standard quadratic form:
[tex]\[ 2w^2 - 4w - 200 = 0 \][/tex]
5. To simplify, divide the entire equation by 2:
[tex]\[ w^2 - 2w - 100 = 0 \][/tex]
6. Solve the quadratic equation using the quadratic formula:
The quadratic formula is given by:
[tex]\[ w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( w^2 - 2w - 100 = 0 \)[/tex], we have [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -100 \)[/tex].
Plugging these values into the quadratic formula:
[tex]\[ w = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-100)}}{2(1)} \][/tex]
[tex]\[ w = \frac{2 \pm \sqrt{4 + 400}}{2} \][/tex]
[tex]\[ w = \frac{2 \pm \sqrt{404}}{2} \][/tex]
[tex]\[ w = \frac{2 \pm 2\sqrt{101}}{2} \][/tex]
[tex]\[ w = 1 \pm \sqrt{101} \][/tex]
7. Determine the feasible value for [tex]\( w \)[/tex]:
We have two potential solutions:
[tex]\[ w = 1 + \sqrt{101} \][/tex]
[tex]\[ w = 1 - \sqrt{101} \][/tex]
Since the width must be a positive value, we discard [tex]\( w = 1 - \sqrt{101} \)[/tex]. Thus:
[tex]\[ w = 1 + \sqrt{101} \][/tex]
8. Calculate the corresponding length:
Recall that the length [tex]\( l \)[/tex] is:
[tex]\[ l = 2w - 4 \][/tex]
Substituting [tex]\( w = 1 + \sqrt{101} \)[/tex]:
[tex]\[ l = 2(1 + \sqrt{101}) - 4 \][/tex]
[tex]\[ l = 2 + 2\sqrt{101} - 4 \][/tex]
[tex]\[ l = 2\sqrt{101} - 2 \][/tex]
9. Round the final answers to the nearest tenth:
- First, approximate [tex]\( \sqrt{101} \)[/tex]:
[tex]\[ \sqrt{101} \approx 10.05 \][/tex]
- Then use it to approximate [tex]\( w \)[/tex] and [tex]\( l \)[/tex]:
[tex]\[ w \approx 1 + 10.05 = 11.05 \Rightarrow \text{Rounded } w \approx 11.1 \][/tex]
[tex]\[ l \approx 2 \times 10.05 - 2 = 20.1 - 2 = 18.1 \Rightarrow \text{Rounded } l \approx 18.1 \][/tex]
Therefore, the width of the garden is approximately [tex]\( 11.1 \)[/tex] feet, and the length of the garden is approximately [tex]\( 18.1 \)[/tex] feet.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.