Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly, let's solve each part of the problem step by step.
(a) Show that [tex]\( 2x^2 + 5x - 58 = 0 \)[/tex]
We are given the dimensions of the base of an open rectangular box. The length of the base is [tex]\((2x + 5)\)[/tex] cm and the width is [tex]\(x\)[/tex] cm. The area of the base is given as [tex]\(58\)[/tex] cm².
The area of a rectangle is given by the product of its length and width. So, we have:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
Substituting the given values:
[tex]\[ 58 = (2x + 5) \times x \][/tex]
Simplifying, we get:
[tex]\[ 58 = 2x^2 + 5x \][/tex]
Rearrange the equation to standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
Thus, we have shown that:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
(b) (i) Solve the equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex]
To solve the quadratic equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex], we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -58\)[/tex].
Substitute these values into the formula:
[tex]\[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot (-58)}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{25 + 464}}{4} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{489}}{4} \][/tex]
We get two solutions:
[tex]\[ x = \frac{-5 + \sqrt{489}}{4} \approx 4.28 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ x = \frac{-5 - \sqrt{489}}{4} \approx -6.78 \quad (\text{correct to two decimal places}) \][/tex]
Since a width of a box cannot be negative, we discard the negative solution.
Thus, the valid solution is:
[tex]\[ x \approx 4.28 \][/tex]
(b) (ii) Hence calculate the volume of the box, stating the units of your answer.
The height of the open box is given by [tex]\((x - 2)\)[/tex] cm. We already found [tex]\(x \approx 4.28\)[/tex].
So the height is:
[tex]\[ \text{Height} = 4.28 - 2 \approx 2.28 \quad (\text{correct to two decimal places}) \][/tex]
The volume of the box is given by the product of its base area and height:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
We know:
[tex]\[ \text{Length} = 2x + 5 = 2(4.28) + 5 \approx 13.56 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ \text{Width} = x \approx 4.28 \][/tex]
[tex]\[ \text{Height} = x - 2 \approx 2.28 \][/tex]
Substituting these values, we get:
[tex]\[ \text{Volume} \approx 13.56 \times 4.28 \times 2.28 \approx 132.14 \quad (\text{correct to two decimal places}) \][/tex]
Thus, the volume of the box is approximately:
[tex]\[ 132.14 \text{ cm}^3 \][/tex]
(a) Show that [tex]\( 2x^2 + 5x - 58 = 0 \)[/tex]
We are given the dimensions of the base of an open rectangular box. The length of the base is [tex]\((2x + 5)\)[/tex] cm and the width is [tex]\(x\)[/tex] cm. The area of the base is given as [tex]\(58\)[/tex] cm².
The area of a rectangle is given by the product of its length and width. So, we have:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
Substituting the given values:
[tex]\[ 58 = (2x + 5) \times x \][/tex]
Simplifying, we get:
[tex]\[ 58 = 2x^2 + 5x \][/tex]
Rearrange the equation to standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
Thus, we have shown that:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
(b) (i) Solve the equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex]
To solve the quadratic equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex], we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -58\)[/tex].
Substitute these values into the formula:
[tex]\[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot (-58)}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{25 + 464}}{4} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{489}}{4} \][/tex]
We get two solutions:
[tex]\[ x = \frac{-5 + \sqrt{489}}{4} \approx 4.28 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ x = \frac{-5 - \sqrt{489}}{4} \approx -6.78 \quad (\text{correct to two decimal places}) \][/tex]
Since a width of a box cannot be negative, we discard the negative solution.
Thus, the valid solution is:
[tex]\[ x \approx 4.28 \][/tex]
(b) (ii) Hence calculate the volume of the box, stating the units of your answer.
The height of the open box is given by [tex]\((x - 2)\)[/tex] cm. We already found [tex]\(x \approx 4.28\)[/tex].
So the height is:
[tex]\[ \text{Height} = 4.28 - 2 \approx 2.28 \quad (\text{correct to two decimal places}) \][/tex]
The volume of the box is given by the product of its base area and height:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
We know:
[tex]\[ \text{Length} = 2x + 5 = 2(4.28) + 5 \approx 13.56 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ \text{Width} = x \approx 4.28 \][/tex]
[tex]\[ \text{Height} = x - 2 \approx 2.28 \][/tex]
Substituting these values, we get:
[tex]\[ \text{Volume} \approx 13.56 \times 4.28 \times 2.28 \approx 132.14 \quad (\text{correct to two decimal places}) \][/tex]
Thus, the volume of the box is approximately:
[tex]\[ 132.14 \text{ cm}^3 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.