Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly, let's solve each part of the problem step by step.
(a) Show that [tex]\( 2x^2 + 5x - 58 = 0 \)[/tex]
We are given the dimensions of the base of an open rectangular box. The length of the base is [tex]\((2x + 5)\)[/tex] cm and the width is [tex]\(x\)[/tex] cm. The area of the base is given as [tex]\(58\)[/tex] cm².
The area of a rectangle is given by the product of its length and width. So, we have:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
Substituting the given values:
[tex]\[ 58 = (2x + 5) \times x \][/tex]
Simplifying, we get:
[tex]\[ 58 = 2x^2 + 5x \][/tex]
Rearrange the equation to standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
Thus, we have shown that:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
(b) (i) Solve the equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex]
To solve the quadratic equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex], we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -58\)[/tex].
Substitute these values into the formula:
[tex]\[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot (-58)}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{25 + 464}}{4} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{489}}{4} \][/tex]
We get two solutions:
[tex]\[ x = \frac{-5 + \sqrt{489}}{4} \approx 4.28 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ x = \frac{-5 - \sqrt{489}}{4} \approx -6.78 \quad (\text{correct to two decimal places}) \][/tex]
Since a width of a box cannot be negative, we discard the negative solution.
Thus, the valid solution is:
[tex]\[ x \approx 4.28 \][/tex]
(b) (ii) Hence calculate the volume of the box, stating the units of your answer.
The height of the open box is given by [tex]\((x - 2)\)[/tex] cm. We already found [tex]\(x \approx 4.28\)[/tex].
So the height is:
[tex]\[ \text{Height} = 4.28 - 2 \approx 2.28 \quad (\text{correct to two decimal places}) \][/tex]
The volume of the box is given by the product of its base area and height:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
We know:
[tex]\[ \text{Length} = 2x + 5 = 2(4.28) + 5 \approx 13.56 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ \text{Width} = x \approx 4.28 \][/tex]
[tex]\[ \text{Height} = x - 2 \approx 2.28 \][/tex]
Substituting these values, we get:
[tex]\[ \text{Volume} \approx 13.56 \times 4.28 \times 2.28 \approx 132.14 \quad (\text{correct to two decimal places}) \][/tex]
Thus, the volume of the box is approximately:
[tex]\[ 132.14 \text{ cm}^3 \][/tex]
(a) Show that [tex]\( 2x^2 + 5x - 58 = 0 \)[/tex]
We are given the dimensions of the base of an open rectangular box. The length of the base is [tex]\((2x + 5)\)[/tex] cm and the width is [tex]\(x\)[/tex] cm. The area of the base is given as [tex]\(58\)[/tex] cm².
The area of a rectangle is given by the product of its length and width. So, we have:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
Substituting the given values:
[tex]\[ 58 = (2x + 5) \times x \][/tex]
Simplifying, we get:
[tex]\[ 58 = 2x^2 + 5x \][/tex]
Rearrange the equation to standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
Thus, we have shown that:
[tex]\[ 2x^2 + 5x - 58 = 0 \][/tex]
(b) (i) Solve the equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex]
To solve the quadratic equation [tex]\(2x^2 + 5x - 58 = 0\)[/tex], we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 2\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -58\)[/tex].
Substitute these values into the formula:
[tex]\[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot (-58)}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{25 + 464}}{4} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{489}}{4} \][/tex]
We get two solutions:
[tex]\[ x = \frac{-5 + \sqrt{489}}{4} \approx 4.28 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ x = \frac{-5 - \sqrt{489}}{4} \approx -6.78 \quad (\text{correct to two decimal places}) \][/tex]
Since a width of a box cannot be negative, we discard the negative solution.
Thus, the valid solution is:
[tex]\[ x \approx 4.28 \][/tex]
(b) (ii) Hence calculate the volume of the box, stating the units of your answer.
The height of the open box is given by [tex]\((x - 2)\)[/tex] cm. We already found [tex]\(x \approx 4.28\)[/tex].
So the height is:
[tex]\[ \text{Height} = 4.28 - 2 \approx 2.28 \quad (\text{correct to two decimal places}) \][/tex]
The volume of the box is given by the product of its base area and height:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
We know:
[tex]\[ \text{Length} = 2x + 5 = 2(4.28) + 5 \approx 13.56 \quad (\text{correct to two decimal places}) \][/tex]
[tex]\[ \text{Width} = x \approx 4.28 \][/tex]
[tex]\[ \text{Height} = x - 2 \approx 2.28 \][/tex]
Substituting these values, we get:
[tex]\[ \text{Volume} \approx 13.56 \times 4.28 \times 2.28 \approx 132.14 \quad (\text{correct to two decimal places}) \][/tex]
Thus, the volume of the box is approximately:
[tex]\[ 132.14 \text{ cm}^3 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.