At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which transformation is represented by the rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex], we need to analyze how this rule affects a point on the coordinate plane.
1. Original Position: Start with a point [tex]\((x, y)\)[/tex].
2. Transformation: Apply the given rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex].
- The x-coordinate of the original point [tex]\((x, y)\)[/tex] becomes the y-coordinate in the transformed point.
- The y-coordinate of the original point [tex]\((x, y)\)[/tex] becomes the negative of the x-coordinate in the transformed point.
Let's investigate what this transformation represents geometrically:
1. 90 Degrees Counterclockwise Rotation:
- When a point [tex]\((x, y)\)[/tex] is rotated 90 degrees counterclockwise around the origin, the coordinates of the point [tex]\((x, y)\)[/tex] are transformed to [tex]\((y, -x)\)[/tex].
- This matches the given transformation rule.
2. Checking Other Options:
- 180 Degrees Rotation: This would transform [tex]\((x, y)\)[/tex] to [tex]\((-x, -y)\)[/tex].
- 270 Degrees Rotation: This would transform [tex]\((x, y)\)[/tex] to [tex]\((-y, x)\)[/tex].
- 360 Degrees Rotation: This would keep the point [tex]\((x, y)\)[/tex] unchanged.
Given this analysis, the rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex] corresponds to a 90-degree counterclockwise rotation around the origin.
Thus, the transformed quadrilateral ABCD according to the rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex] is equivalent to the transformation [tex]\( R_{0, 90^{\circ}} \)[/tex].
The correct answer is:
[tex]\[ R_{0, 90^{\circ}}. \][/tex]
1. Original Position: Start with a point [tex]\((x, y)\)[/tex].
2. Transformation: Apply the given rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex].
- The x-coordinate of the original point [tex]\((x, y)\)[/tex] becomes the y-coordinate in the transformed point.
- The y-coordinate of the original point [tex]\((x, y)\)[/tex] becomes the negative of the x-coordinate in the transformed point.
Let's investigate what this transformation represents geometrically:
1. 90 Degrees Counterclockwise Rotation:
- When a point [tex]\((x, y)\)[/tex] is rotated 90 degrees counterclockwise around the origin, the coordinates of the point [tex]\((x, y)\)[/tex] are transformed to [tex]\((y, -x)\)[/tex].
- This matches the given transformation rule.
2. Checking Other Options:
- 180 Degrees Rotation: This would transform [tex]\((x, y)\)[/tex] to [tex]\((-x, -y)\)[/tex].
- 270 Degrees Rotation: This would transform [tex]\((x, y)\)[/tex] to [tex]\((-y, x)\)[/tex].
- 360 Degrees Rotation: This would keep the point [tex]\((x, y)\)[/tex] unchanged.
Given this analysis, the rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex] corresponds to a 90-degree counterclockwise rotation around the origin.
Thus, the transformed quadrilateral ABCD according to the rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex] is equivalent to the transformation [tex]\( R_{0, 90^{\circ}} \)[/tex].
The correct answer is:
[tex]\[ R_{0, 90^{\circ}}. \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.