Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze the given rectangle [tex]\( ABDE \)[/tex] with dimensions [tex]\( AB = 10 \)[/tex] cm and [tex]\( AE = 16 \)[/tex] cm.
The question requires us to identify which pairs of points could be used as the line of rotation to form a cylinder with a radius of [tex]\( 5 \)[/tex] cm.
To solve this, let's consider the possible scenarios:
1. Rotating around [tex]\( AB \)[/tex]:
- If we rotate the rectangle around the side [tex]\( AB \)[/tex], then the length [tex]\( AE = 16 \)[/tex] cm would become the diameter of the cylinder's base.
- Since the diameter of the cylinder is twice the radius, the radius [tex]\( r \)[/tex] would be [tex]\( \frac{AE}{2} = \frac{16}{2} = 8 \)[/tex] cm.
- However, we need a radius of [tex]\( 5 \)[/tex] cm, so this scenario does not work.
2. Rotating around [tex]\( AE \)[/tex]:
- If we rotate the rectangle around the side [tex]\( AE \)[/tex], then the length [tex]\( AB = 10 \)[/tex] cm would become the diameter of the cylinder's base.
- The diameter of the cylinder would then be [tex]\( AB \)[/tex], making the radius [tex]\( r \)[/tex] [tex]\( \frac{AB}{2} = \frac{10}{2} = 5 \)[/tex] cm, which matches our required radius.
Therefore, the correct pair of points must lie along the side [tex]\( AE \)[/tex] (that would form the desired radius when rotated). Considering the sides more specifically:
- Points [tex]\( B \)[/tex] and [tex]\( D \)[/tex] are such that rotating around this line through these points achieves the correct base radius of [tex]\( 5 \)[/tex] cm.
Thus, the line of rotation, ensuring the correct radius, passes through points [tex]\( B \)[/tex] and [tex]\( D \)[/tex].
Therefore, the answer is:
[tex]\[ \boxed{B \text{ and } D} \][/tex]
The question requires us to identify which pairs of points could be used as the line of rotation to form a cylinder with a radius of [tex]\( 5 \)[/tex] cm.
To solve this, let's consider the possible scenarios:
1. Rotating around [tex]\( AB \)[/tex]:
- If we rotate the rectangle around the side [tex]\( AB \)[/tex], then the length [tex]\( AE = 16 \)[/tex] cm would become the diameter of the cylinder's base.
- Since the diameter of the cylinder is twice the radius, the radius [tex]\( r \)[/tex] would be [tex]\( \frac{AE}{2} = \frac{16}{2} = 8 \)[/tex] cm.
- However, we need a radius of [tex]\( 5 \)[/tex] cm, so this scenario does not work.
2. Rotating around [tex]\( AE \)[/tex]:
- If we rotate the rectangle around the side [tex]\( AE \)[/tex], then the length [tex]\( AB = 10 \)[/tex] cm would become the diameter of the cylinder's base.
- The diameter of the cylinder would then be [tex]\( AB \)[/tex], making the radius [tex]\( r \)[/tex] [tex]\( \frac{AB}{2} = \frac{10}{2} = 5 \)[/tex] cm, which matches our required radius.
Therefore, the correct pair of points must lie along the side [tex]\( AE \)[/tex] (that would form the desired radius when rotated). Considering the sides more specifically:
- Points [tex]\( B \)[/tex] and [tex]\( D \)[/tex] are such that rotating around this line through these points achieves the correct base radius of [tex]\( 5 \)[/tex] cm.
Thus, the line of rotation, ensuring the correct radius, passes through points [tex]\( B \)[/tex] and [tex]\( D \)[/tex].
Therefore, the answer is:
[tex]\[ \boxed{B \text{ and } D} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.