Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Write the equation of the line that has a slope of 2 and passes through the point (2, 4).

Sagot :

To find the equation of the line that has a slope of 2 and passes through the point (2, 4), we will use the point-slope form of the equation of a line. The point-slope form is given by:

[tex]\[ y - y_1 = m(x - x_1) \][/tex]

where [tex]\( m \)[/tex] is the slope of the line, and [tex]\((x_1, y_1)\)[/tex] is a point on the line.

Given:
- The slope [tex]\( m = 2 \)[/tex]
- The point [tex]\((x_1, y_1) = (2, 4)\)[/tex]

Substitute the given values into the point-slope form:

[tex]\[ y - 4 = 2(x - 2) \][/tex]

Now, simplify the equation to get it into the slope-intercept form [tex]\(y = mx + b\)[/tex]:

1. Distribute the slope 2 on the right-hand side of the equation:

[tex]\[ y - 4 = 2x - 4 \][/tex]

2. Add 4 to both sides of the equation to isolate [tex]\( y \)[/tex]:

[tex]\[ y - 4 + 4 = 2x - 4 + 4 \][/tex]
[tex]\[ y = 2x \][/tex]

So, the equation of the line is:

[tex]\[ \boxed{y = 2x} \][/tex]