Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the sum of [tex]\(-2 \frac{3}{4}\)[/tex] and [tex]\(\frac{5}{9}\)[/tex], follow these steps:
1. Convert the Mixed Number to an Improper Fraction:
- The mixed number [tex]\(-2 \frac{3}{4}\)[/tex] can be converted to an improper fraction:
[tex]\[ -2 \frac{3}{4} = -2 - \frac{3}{4}. \][/tex]
To do this, write [tex]\(-2\)[/tex] as [tex]\(\frac{-8}{4}\)[/tex]:
[tex]\[ -2 = \frac{-8}{4}. \][/tex]
Now add these two fractions:
[tex]\[ -2 \frac{3}{4} = \frac{-8}{4} + \frac{-3}{4} = \frac{-8 - 3}{4} = \frac{-11}{4}. \][/tex]
2. Add the Two Fractions:
- Now, we need to add [tex]\(\frac{-11}{4}\)[/tex] and [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ \frac{-11}{4} + \frac{5}{9}. \][/tex]
To add these fractions, find a common denominator. The least common multiple of 4 and 9 is 36.
Convert each fraction to have the common denominator:
[tex]\[ \frac{-11}{4} = \frac{-11 \times 9}{4 \times 9} = \frac{-99}{36}, \][/tex]
[tex]\[ \frac{5}{9} = \frac{5 \times 4}{9 \times 4} = \frac{20}{36}. \][/tex]
Now add them:
[tex]\[ \frac{-99}{36} + \frac{20}{36} = \frac{-99 + 20}{36} = \frac{-79}{36}. \][/tex]
3. Simplify the Result (if necessary):
- The fraction [tex]\(\frac{-79}{36}\)[/tex] is already in its simplest form because 79 and 36 share no common divisors other than 1.
The sum of [tex]\(-2 \frac{3}{4}\)[/tex] and [tex]\(\frac{5}{9}\)[/tex] is [tex]\(\frac{-79}{36}\)[/tex]. This is a fraction, so the correct answer to the question is:
The sum is a fraction.
Additionally, the sum [tex]\(\frac{-79}{36}\)[/tex] when converted to decimal form is approximately [tex]\(-2.1944444444444446\)[/tex], which is a non-terminating, repeating decimal. The decimal form repeating part, however, reassures that [tex]\(\frac{-79}{36}\)[/tex] is a rational number.
The sum is rational.
Thus, the correct answer is also that the sum is a terminating and a repeating decimal.
In summary:
- The sum is a fraction.
- The sum is rational.
However, for the answer format given, selecting "The sum is a fraction" would be the simplest and most directly relevant choice.
1. Convert the Mixed Number to an Improper Fraction:
- The mixed number [tex]\(-2 \frac{3}{4}\)[/tex] can be converted to an improper fraction:
[tex]\[ -2 \frac{3}{4} = -2 - \frac{3}{4}. \][/tex]
To do this, write [tex]\(-2\)[/tex] as [tex]\(\frac{-8}{4}\)[/tex]:
[tex]\[ -2 = \frac{-8}{4}. \][/tex]
Now add these two fractions:
[tex]\[ -2 \frac{3}{4} = \frac{-8}{4} + \frac{-3}{4} = \frac{-8 - 3}{4} = \frac{-11}{4}. \][/tex]
2. Add the Two Fractions:
- Now, we need to add [tex]\(\frac{-11}{4}\)[/tex] and [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ \frac{-11}{4} + \frac{5}{9}. \][/tex]
To add these fractions, find a common denominator. The least common multiple of 4 and 9 is 36.
Convert each fraction to have the common denominator:
[tex]\[ \frac{-11}{4} = \frac{-11 \times 9}{4 \times 9} = \frac{-99}{36}, \][/tex]
[tex]\[ \frac{5}{9} = \frac{5 \times 4}{9 \times 4} = \frac{20}{36}. \][/tex]
Now add them:
[tex]\[ \frac{-99}{36} + \frac{20}{36} = \frac{-99 + 20}{36} = \frac{-79}{36}. \][/tex]
3. Simplify the Result (if necessary):
- The fraction [tex]\(\frac{-79}{36}\)[/tex] is already in its simplest form because 79 and 36 share no common divisors other than 1.
The sum of [tex]\(-2 \frac{3}{4}\)[/tex] and [tex]\(\frac{5}{9}\)[/tex] is [tex]\(\frac{-79}{36}\)[/tex]. This is a fraction, so the correct answer to the question is:
The sum is a fraction.
Additionally, the sum [tex]\(\frac{-79}{36}\)[/tex] when converted to decimal form is approximately [tex]\(-2.1944444444444446\)[/tex], which is a non-terminating, repeating decimal. The decimal form repeating part, however, reassures that [tex]\(\frac{-79}{36}\)[/tex] is a rational number.
The sum is rational.
Thus, the correct answer is also that the sum is a terminating and a repeating decimal.
In summary:
- The sum is a fraction.
- The sum is rational.
However, for the answer format given, selecting "The sum is a fraction" would be the simplest and most directly relevant choice.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.