Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze each of the options to determine whether they are rational or irrational.
### Option 1: [tex]\(3 \cdot \pi\)[/tex]
- [tex]\(\pi\)[/tex] (pi) is known to be an irrational number. An irrational number cannot be expressed as a fraction of two integers.
- Multiplying [tex]\( \pi \)[/tex] by an integer (in this case, 3) does not change its irrationality.
- Hence, [tex]\(3 \cdot \pi\)[/tex] is also an irrational number.
Conclusion: [tex]\(3 \cdot \pi\)[/tex] is not a rational number.
### Option 2: [tex]\(\frac{2}{3} + 9.26\)[/tex]
- [tex]\(\frac{2}{3}\)[/tex] is a rational number because it is a fraction of two integers.
- 9.26 is a terminating decimal, which is a form of a rational number because it can also be expressed as a fraction (in this case, [tex]\(\frac{926}{100}\)[/tex]).
- Adding two rational numbers together results in another rational number.
Conclusion: [tex]\(\frac{2}{3} + 9.26\)[/tex] is a rational number.
### Option 3: [tex]\(\sqrt{45} + \sqrt{36}\)[/tex]
- [tex]\(\sqrt{45}\)[/tex] can be simplified to [tex]\(3\sqrt{5}\)[/tex]. Since [tex]\(\sqrt{5}\)[/tex] is an irrational number, [tex]\(3\sqrt{5}\)[/tex] is also irrational.
- [tex]\(\sqrt{36}\)[/tex] simplifies to 6, which is a rational number.
- The sum of an irrational number ([tex]\(3\sqrt{5}\)[/tex]) and a rational number (6) is always irrational.
Conclusion: [tex]\(\sqrt{45} + \sqrt{36}\)[/tex] is not a rational number.
### Option 4: [tex]\(14.\overline{3} + 5.78765239\)[/tex]
- [tex]\(14.\overline{3}\)[/tex] (14.333...) is a repeating decimal, which is a rational number. Repeating decimals can be expressed as fractions.
- 5.78765239 is a terminating decimal, another form of a rational number.
- Adding two rational numbers together results in another rational number.
Conclusion: [tex]\(14.\overline{3} + 5.78765239\)[/tex] is a rational number.
### Final Summary
- Option 1: [tex]\(3 \cdot \pi\)[/tex] is not rational.
- Option 2: [tex]\(\frac{2}{3} + 9.26\)[/tex] is rational.
- Option 3: [tex]\(\sqrt{45} + \sqrt{36}\)[/tex] is not rational.
- Option 4: [tex]\(14.\overline{3} + 5.78765239\)[/tex] is rational.
Therefore, the rational expressions among the given options are [tex]\(\frac{2}{3} + 9.26\)[/tex] and [tex]\(14.\overline{3} + 5.78765239\)[/tex].
### Option 1: [tex]\(3 \cdot \pi\)[/tex]
- [tex]\(\pi\)[/tex] (pi) is known to be an irrational number. An irrational number cannot be expressed as a fraction of two integers.
- Multiplying [tex]\( \pi \)[/tex] by an integer (in this case, 3) does not change its irrationality.
- Hence, [tex]\(3 \cdot \pi\)[/tex] is also an irrational number.
Conclusion: [tex]\(3 \cdot \pi\)[/tex] is not a rational number.
### Option 2: [tex]\(\frac{2}{3} + 9.26\)[/tex]
- [tex]\(\frac{2}{3}\)[/tex] is a rational number because it is a fraction of two integers.
- 9.26 is a terminating decimal, which is a form of a rational number because it can also be expressed as a fraction (in this case, [tex]\(\frac{926}{100}\)[/tex]).
- Adding two rational numbers together results in another rational number.
Conclusion: [tex]\(\frac{2}{3} + 9.26\)[/tex] is a rational number.
### Option 3: [tex]\(\sqrt{45} + \sqrt{36}\)[/tex]
- [tex]\(\sqrt{45}\)[/tex] can be simplified to [tex]\(3\sqrt{5}\)[/tex]. Since [tex]\(\sqrt{5}\)[/tex] is an irrational number, [tex]\(3\sqrt{5}\)[/tex] is also irrational.
- [tex]\(\sqrt{36}\)[/tex] simplifies to 6, which is a rational number.
- The sum of an irrational number ([tex]\(3\sqrt{5}\)[/tex]) and a rational number (6) is always irrational.
Conclusion: [tex]\(\sqrt{45} + \sqrt{36}\)[/tex] is not a rational number.
### Option 4: [tex]\(14.\overline{3} + 5.78765239\)[/tex]
- [tex]\(14.\overline{3}\)[/tex] (14.333...) is a repeating decimal, which is a rational number. Repeating decimals can be expressed as fractions.
- 5.78765239 is a terminating decimal, another form of a rational number.
- Adding two rational numbers together results in another rational number.
Conclusion: [tex]\(14.\overline{3} + 5.78765239\)[/tex] is a rational number.
### Final Summary
- Option 1: [tex]\(3 \cdot \pi\)[/tex] is not rational.
- Option 2: [tex]\(\frac{2}{3} + 9.26\)[/tex] is rational.
- Option 3: [tex]\(\sqrt{45} + \sqrt{36}\)[/tex] is not rational.
- Option 4: [tex]\(14.\overline{3} + 5.78765239\)[/tex] is rational.
Therefore, the rational expressions among the given options are [tex]\(\frac{2}{3} + 9.26\)[/tex] and [tex]\(14.\overline{3} + 5.78765239\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.