Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the differential equation step by step. The equation is:
[tex]\[ \frac{(2t^2 + 3t)}{(2s + s)} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
First, let's simplify the equation. Note that [tex]\(2s + s = 3s\)[/tex], so the equation becomes:
[tex]\[ \frac{2t^2 + 3t}{3s} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
Now, we can separate variables. Multiply both sides by [tex]\(3s(s+1)\)[/tex] to get:
[tex]\[ (2t^2 + 3t) \, ds = 3s \cdot t \, dt \][/tex]
Now we can integrate both sides separately. Rewrite the equation in a separated form:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds = \int t(s+1) \, dt \][/tex]
We need to solve these integrals:
### Left Integral:
Let's integrate the left side with respect to [tex]\(s\)[/tex]:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds \][/tex]
### Right Integral:
For the right side, we integrate with respect to [tex]\(t\)[/tex]:
[tex]\[ \int t(s+1) \, dt \][/tex]
Let's focus on integrating these properly.
### Simplify by separable variables:
Separate and integrate as follows:
[tex]\[ \int \frac{1}{s} \, ds = \int \frac{t}{2t^2 + 3t} \, dt + \int \frac{1}{2t^2 + 3t} \, dt \][/tex]
For the simplicity purpose, we need to look at the integrals:
[tex]\[ \int \frac{1}{s} \, ds = \ln|s| + C_1 \][/tex]
Similarly, rewrite the integral on the right-hand side by separating as follows:
[tex]\[ \int \left( \frac{t}{2t^2 + 3t} + \frac{1}{2t^2 + 3t} \right) \, dt \][/tex]
We notice that the first integral can be solved by direct observation and use of logarithm properties:
### Integrate with partial fraction decomposition:
[tex]\[ \int t \left( \frac{1}{t(2t + 3)} \right) \, dt + \int \left( \frac{1}{2t(t + \frac{3}{2})} \right) \, dt \][/tex]
Hence the right-hand integral becomes:
### Substitution on left integral:
Using u-substitution where [tex]\(u = 2t^2+3t \)[/tex]:
[tex]\[ \int \frac t{u} du = \frac{\ln|u|}{2} \][/tex]
Integrate right-hand...
So, combining all:
[tex]\(\ln|s| = \frac{\ln|2t^2+ 3t|}{2} \)[/tex]
Solving the equation, we get
[tex]\(\boxed{s(t)} = e^{\frac{\ln|u|}{2}}}= \sqrt{u}} Boundary conditionsir \(|u | = |2t^2+3t|\)[/tex]
Hence \(\sqrt(u) }= sqrt(2t^3+ 3t
With constant `C`
[tex]\[ \frac{(2t^2 + 3t)}{(2s + s)} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
First, let's simplify the equation. Note that [tex]\(2s + s = 3s\)[/tex], so the equation becomes:
[tex]\[ \frac{2t^2 + 3t}{3s} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
Now, we can separate variables. Multiply both sides by [tex]\(3s(s+1)\)[/tex] to get:
[tex]\[ (2t^2 + 3t) \, ds = 3s \cdot t \, dt \][/tex]
Now we can integrate both sides separately. Rewrite the equation in a separated form:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds = \int t(s+1) \, dt \][/tex]
We need to solve these integrals:
### Left Integral:
Let's integrate the left side with respect to [tex]\(s\)[/tex]:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds \][/tex]
### Right Integral:
For the right side, we integrate with respect to [tex]\(t\)[/tex]:
[tex]\[ \int t(s+1) \, dt \][/tex]
Let's focus on integrating these properly.
### Simplify by separable variables:
Separate and integrate as follows:
[tex]\[ \int \frac{1}{s} \, ds = \int \frac{t}{2t^2 + 3t} \, dt + \int \frac{1}{2t^2 + 3t} \, dt \][/tex]
For the simplicity purpose, we need to look at the integrals:
[tex]\[ \int \frac{1}{s} \, ds = \ln|s| + C_1 \][/tex]
Similarly, rewrite the integral on the right-hand side by separating as follows:
[tex]\[ \int \left( \frac{t}{2t^2 + 3t} + \frac{1}{2t^2 + 3t} \right) \, dt \][/tex]
We notice that the first integral can be solved by direct observation and use of logarithm properties:
### Integrate with partial fraction decomposition:
[tex]\[ \int t \left( \frac{1}{t(2t + 3)} \right) \, dt + \int \left( \frac{1}{2t(t + \frac{3}{2})} \right) \, dt \][/tex]
Hence the right-hand integral becomes:
### Substitution on left integral:
Using u-substitution where [tex]\(u = 2t^2+3t \)[/tex]:
[tex]\[ \int \frac t{u} du = \frac{\ln|u|}{2} \][/tex]
Integrate right-hand...
So, combining all:
[tex]\(\ln|s| = \frac{\ln|2t^2+ 3t|}{2} \)[/tex]
Solving the equation, we get
[tex]\(\boxed{s(t)} = e^{\frac{\ln|u|}{2}}}= \sqrt{u}} Boundary conditionsir \(|u | = |2t^2+3t|\)[/tex]
Hence \(\sqrt(u) }= sqrt(2t^3+ 3t
With constant `C`
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.