Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's solve the differential equation step by step. The equation is:
[tex]\[ \frac{(2t^2 + 3t)}{(2s + s)} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
First, let's simplify the equation. Note that [tex]\(2s + s = 3s\)[/tex], so the equation becomes:
[tex]\[ \frac{2t^2 + 3t}{3s} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
Now, we can separate variables. Multiply both sides by [tex]\(3s(s+1)\)[/tex] to get:
[tex]\[ (2t^2 + 3t) \, ds = 3s \cdot t \, dt \][/tex]
Now we can integrate both sides separately. Rewrite the equation in a separated form:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds = \int t(s+1) \, dt \][/tex]
We need to solve these integrals:
### Left Integral:
Let's integrate the left side with respect to [tex]\(s\)[/tex]:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds \][/tex]
### Right Integral:
For the right side, we integrate with respect to [tex]\(t\)[/tex]:
[tex]\[ \int t(s+1) \, dt \][/tex]
Let's focus on integrating these properly.
### Simplify by separable variables:
Separate and integrate as follows:
[tex]\[ \int \frac{1}{s} \, ds = \int \frac{t}{2t^2 + 3t} \, dt + \int \frac{1}{2t^2 + 3t} \, dt \][/tex]
For the simplicity purpose, we need to look at the integrals:
[tex]\[ \int \frac{1}{s} \, ds = \ln|s| + C_1 \][/tex]
Similarly, rewrite the integral on the right-hand side by separating as follows:
[tex]\[ \int \left( \frac{t}{2t^2 + 3t} + \frac{1}{2t^2 + 3t} \right) \, dt \][/tex]
We notice that the first integral can be solved by direct observation and use of logarithm properties:
### Integrate with partial fraction decomposition:
[tex]\[ \int t \left( \frac{1}{t(2t + 3)} \right) \, dt + \int \left( \frac{1}{2t(t + \frac{3}{2})} \right) \, dt \][/tex]
Hence the right-hand integral becomes:
### Substitution on left integral:
Using u-substitution where [tex]\(u = 2t^2+3t \)[/tex]:
[tex]\[ \int \frac t{u} du = \frac{\ln|u|}{2} \][/tex]
Integrate right-hand...
So, combining all:
[tex]\(\ln|s| = \frac{\ln|2t^2+ 3t|}{2} \)[/tex]
Solving the equation, we get
[tex]\(\boxed{s(t)} = e^{\frac{\ln|u|}{2}}}= \sqrt{u}} Boundary conditionsir \(|u | = |2t^2+3t|\)[/tex]
Hence \(\sqrt(u) }= sqrt(2t^3+ 3t
With constant `C`
[tex]\[ \frac{(2t^2 + 3t)}{(2s + s)} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
First, let's simplify the equation. Note that [tex]\(2s + s = 3s\)[/tex], so the equation becomes:
[tex]\[ \frac{2t^2 + 3t}{3s} \frac{ds}{dt} = \frac{t}{s+1} \][/tex]
Now, we can separate variables. Multiply both sides by [tex]\(3s(s+1)\)[/tex] to get:
[tex]\[ (2t^2 + 3t) \, ds = 3s \cdot t \, dt \][/tex]
Now we can integrate both sides separately. Rewrite the equation in a separated form:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds = \int t(s+1) \, dt \][/tex]
We need to solve these integrals:
### Left Integral:
Let's integrate the left side with respect to [tex]\(s\)[/tex]:
[tex]\[ \int \frac{3s}{2t^2 + 3t} \, ds \][/tex]
### Right Integral:
For the right side, we integrate with respect to [tex]\(t\)[/tex]:
[tex]\[ \int t(s+1) \, dt \][/tex]
Let's focus on integrating these properly.
### Simplify by separable variables:
Separate and integrate as follows:
[tex]\[ \int \frac{1}{s} \, ds = \int \frac{t}{2t^2 + 3t} \, dt + \int \frac{1}{2t^2 + 3t} \, dt \][/tex]
For the simplicity purpose, we need to look at the integrals:
[tex]\[ \int \frac{1}{s} \, ds = \ln|s| + C_1 \][/tex]
Similarly, rewrite the integral on the right-hand side by separating as follows:
[tex]\[ \int \left( \frac{t}{2t^2 + 3t} + \frac{1}{2t^2 + 3t} \right) \, dt \][/tex]
We notice that the first integral can be solved by direct observation and use of logarithm properties:
### Integrate with partial fraction decomposition:
[tex]\[ \int t \left( \frac{1}{t(2t + 3)} \right) \, dt + \int \left( \frac{1}{2t(t + \frac{3}{2})} \right) \, dt \][/tex]
Hence the right-hand integral becomes:
### Substitution on left integral:
Using u-substitution where [tex]\(u = 2t^2+3t \)[/tex]:
[tex]\[ \int \frac t{u} du = \frac{\ln|u|}{2} \][/tex]
Integrate right-hand...
So, combining all:
[tex]\(\ln|s| = \frac{\ln|2t^2+ 3t|}{2} \)[/tex]
Solving the equation, we get
[tex]\(\boxed{s(t)} = e^{\frac{\ln|u|}{2}}}= \sqrt{u}} Boundary conditionsir \(|u | = |2t^2+3t|\)[/tex]
Hence \(\sqrt(u) }= sqrt(2t^3+ 3t
With constant `C`
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.