Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
Step-by-step explanation:
To address these questions, we'll use the properties of the sum of normally distributed variables. Given that the mean of the sugar amount is \( \mu = 39.01 \) and the standard deviation is \( \sigma = 0.5 \), each can's sugar content can be considered normally distributed.
For a sample of 100 cans:
- The mean of the sum \( S_{100} \) of these 100 cans is \( \mu_{S_{100}} = 100 \times 39.01 = 3901 \).
- The standard deviation of the sum \( S_{100} \) is \( \sigma_{S_{100}} = \sqrt{100} \times 0.5 = 5 \).
Now, let's calculate the probabilities:
**a) Probability that the sum of the 100 values is greater than 3,910:**
Convert this to a standard normal variable \( Z \):
\[ Z = \frac{3910 - 3901}{5} = \frac{9}{5} = 1.8 \]
Now, find the probability \( P(Z > 1.8) \) using the standard normal distribution table or calculator:
\[ P(Z > 1.8) \approx 0.0359 \]
**b) Probability that the sum of the 100 values is less than 3,900:**
Convert this to a standard normal variable \( Z \):
\[ Z = \frac{3900 - 3901}{5} = -0.2 \]
Now, find the probability \( P(Z < -0.2) \):
\[ P(Z < -0.2) \approx 0.4207 \]
**c) Probability that the sum of the 100 values falls between the numbers found in parts (a) and (b):**
This is \( P(3900 < S_{100} < 3910) \). Using the standard normal probabilities from parts (a) and (b):
\[ P(3900 < S_{100} < 3910) = 1 - [P(Z \leq -0.2) + P(Z \geq 1.8)] \]
\[ P(3900 < S_{100} < 3910) = 1 - [0.4207 + 0.0359] \]
\[ P(3900 < S_{100} < 3910) \approx 1 - 0.4566 \]
\[ P(3900 < S_{100} < 3910) \approx 0.5434 \]
**d) Probability that the sum of the 100 values falls between the z-scores of -2 and 1:**
Convert -2 and 1 to standard normal variables:
For \( Z = -2 \):
\[ P(Z < -2) \approx 0.0228 \]
For \( Z = 1 \):
\[ P(Z < 1) \approx 0.8413 \]
Now, find \( P(-2 < Z < 1) \):
\[ P(-2 < Z < 1) = P(Z < 1) - P(Z < -2) \]
\[ P(-2 < Z < 1) = 0.8413 - 0.0228 \]
\[ P(-2 < Z < 1) = 0.8185 \]
Therefore, the probabilities for the scenarios described are:
- **a)** Probability \( P(S_{100} > 3910) \approx 0.0359 \)
- **b)** Probability \( P(S_{100} < 3900) \approx 0.4207 \)
- **c)** Probability \( P(3900 < S_{100} < 3910) \approx 0.5434 \)
- **d)** Probability \( P(-2 < Z < 1) \approx 0.8185 \)
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.