Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the given system of linear equations using determinants, we can apply Cramer's Rule. Here's the step-by-step process:
Given the system of linear equations:
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
We can rewrite this system in matrix form [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} -3 & 2 \\ 4 & -15 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} -9 \\ -25 \end{pmatrix} \][/tex]
According to Cramer's Rule, the solution for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] can be found using the determinants of matrices derived from [tex]\(A\)[/tex] by replacing the respective columns with the column matrix [tex]\(B\)[/tex]. The solution is given as:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)}, \quad y = \frac{\text{det}(A_y)}{\text{det}(A)} \][/tex]
Where:
- [tex]\(\text{det}(A)\)[/tex] is the determinant of the matrix [tex]\(A\)[/tex].
- [tex]\(\text{det}(A_x)\)[/tex] is the determinant of the matrix formed by replacing the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
- [tex]\(\text{det}(A_y)\)[/tex] is the determinant of the matrix formed by replacing the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
Let's identify each determinant:
1. The determinant of [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} -3 & 2 \\ 4 & -15 \end{pmatrix} \][/tex]
2. The determinant of [tex]\(A_x\)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -9 & 2 \\ -25 & -15 \end{pmatrix} \][/tex]
3. The determinant of [tex]\(A_y\)[/tex]:
[tex]\[ A_y = \begin{pmatrix} -3 & -9 \\ 4 & -25 \end{pmatrix} \][/tex]
Given the determinants:
[tex]\[ \text{det}(A) = 37.000000000000014, \quad \text{det}(A_x) = 184.99999999999991, \quad \text{det}(A_y) = 110.99999999999997 \][/tex]
These determinants can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)} = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Thus, the determinants used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in the system of linear equations are:
- [tex]\(\text{det}(A) = 37.000000000000014\)[/tex]
- [tex]\(\text{det}(A_x) = 184.99999999999991\)[/tex]
- [tex]\(\text{det}(A_y) = 110.99999999999997\)[/tex]
Given the system of linear equations:
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
We can rewrite this system in matrix form [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} -3 & 2 \\ 4 & -15 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} -9 \\ -25 \end{pmatrix} \][/tex]
According to Cramer's Rule, the solution for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] can be found using the determinants of matrices derived from [tex]\(A\)[/tex] by replacing the respective columns with the column matrix [tex]\(B\)[/tex]. The solution is given as:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)}, \quad y = \frac{\text{det}(A_y)}{\text{det}(A)} \][/tex]
Where:
- [tex]\(\text{det}(A)\)[/tex] is the determinant of the matrix [tex]\(A\)[/tex].
- [tex]\(\text{det}(A_x)\)[/tex] is the determinant of the matrix formed by replacing the first column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
- [tex]\(\text{det}(A_y)\)[/tex] is the determinant of the matrix formed by replacing the second column of [tex]\(A\)[/tex] with [tex]\(B\)[/tex].
Let's identify each determinant:
1. The determinant of [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} -3 & 2 \\ 4 & -15 \end{pmatrix} \][/tex]
2. The determinant of [tex]\(A_x\)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -9 & 2 \\ -25 & -15 \end{pmatrix} \][/tex]
3. The determinant of [tex]\(A_y\)[/tex]:
[tex]\[ A_y = \begin{pmatrix} -3 & -9 \\ 4 & -25 \end{pmatrix} \][/tex]
Given the determinants:
[tex]\[ \text{det}(A) = 37.000000000000014, \quad \text{det}(A_x) = 184.99999999999991, \quad \text{det}(A_y) = 110.99999999999997 \][/tex]
These determinants can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)} = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Thus, the determinants used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in the system of linear equations are:
- [tex]\(\text{det}(A) = 37.000000000000014\)[/tex]
- [tex]\(\text{det}(A_x) = 184.99999999999991\)[/tex]
- [tex]\(\text{det}(A_y) = 110.99999999999997\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.