Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Given the function [tex]\( y = x^{\frac{6}{7}}(x^2 - 4) \)[/tex]:

1. Domain Endpoint(s):
- A. The domain endpoint(s) is/are at [tex]\( x = \ \square \)[/tex].
(Round to the nearest thousandth as needed. Use a comma to separate answers as needed.)
- B. There are no domain endpoints.

2. Local Maxima:
- A. The point(s) corresponding to the local maxima is/are [tex]\( (0, 0) \)[/tex].
(Type an ordered pair. Use integers or decimals for any numbers in the expression. Round to the nearest thousandth as needed. Use a comma to separate answers as needed.)
- B. There are no points corresponding to local maxima.

3. Local Minima:
- A. The point(s) corresponding to the local minima is/are [tex]\( (-1.095, -3.028), (1.095, -3.028) \)[/tex].
(Type an ordered pair. Use integers or decimals for any numbers in the expression. Round to the nearest thousandth as needed. Use a comma to separate answers as needed.)
- B. There are no points corresponding to local minima.

4. Absolute Maxima:
- A. The point(s) corresponding to the absolute maxima is/are [tex]\( \ \square \ \)[/tex].
(Type an ordered pair. Use integers or decimals for any numbers in the expression. Round to the nearest thousandth as needed. Use a comma to separate answers as needed.)
- B. There are no points corresponding to absolute maxima.


Sagot :

To solve the problem step by step, let's analyze the function [tex]\( y = x^{\frac{6}{7}} (x^2 - 4) \)[/tex].

### Step 1: Domain Endpoints
The function [tex]\( y = x^{\frac{6}{7}} (x^2 - 4) \)[/tex] is defined for all real values of [tex]\( x \)[/tex]. There are no restrictions on the domain because the exponent [tex]\( \frac{6}{7} \)[/tex] is positive and non-zero for any real [tex]\( x \)[/tex]. Hence, the function does not have any endpoints within the real number set.

Answer:
B. There are no domain endpoints.

### Step 2: Local Maxima and Minima

To find local maxima and minima, we need to follow several steps:

#### Taking the First Derivative
First, we find the first derivative [tex]\( \frac{dy}{dx} \)[/tex]:

[tex]\[ y = x^{\frac{6}{7}} (x^2 - 4) \][/tex]
Let's apply the product rule:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}\left(x^{\frac{6}{7}}\right) \cdot (x^2 - 4) + x^{\frac{6}{7}} \cdot \frac{d}{dx}(x^2 - 4) \][/tex]

Using the power rule,
[tex]\[ \frac{d}{dx}\left(x^{\frac{6}{7}}\right) = \frac{6}{7} x^{\frac{-1}{7}} \][/tex]
and
[tex]\[ \frac{d}{dx}(x^2 - 4) = 2x \][/tex]

So the first derivative is:
[tex]\[ \frac{dy}{dx} = \frac{6}{7} x^{\frac{-1}{7}} (x^2 - 4) + x^{\frac{6}{7}} 2x \][/tex]
[tex]\[ = \frac{6}{7} x^{\frac{-1}{7}} (x^2 - 4) + 2x^{\frac{13}{7}} \][/tex]

Set the derivative to zero to find critical points:
[tex]\[ \frac{6}{7} x^{\frac{-1}{7}} (x^2 - 4) + 2x^{\frac{13}{7}} = 0 \][/tex]

Combine like terms:
[tex]\[ \frac{6}{7} (x^2 - 4) + 2x^2 = 0 \][/tex]

Multiply through by [tex]\( x^{\frac{1}{7}} \)[/tex]:
[tex]\[ \frac{6}{7} (x^2 - 4)x^{-\frac{1}{7}} + 2x^{2+\frac{6}{7}} = 0 \][/tex]

Simplify:
[tex]\[ \frac{6}{7} x^{-\frac{1}{7}} (x^2 - 4) + 2x^{\frac{20}{7}} = 0 \][/tex]
[tex]\[ \frac{6}{7} (x^2 - 4) + 2x^{\frac{21}{7}} = 0 \][/tex]

Separate terms:
[tex]\[ \frac{6}{7} (x^2 - 4) + \frac{14x^3}{7} = 0 \][/tex]

Equate coefficients:
[tex]\[ 6(x^2 - 4) + 14x^3 = 0 \][/tex]
[tex]\[ 6x^2 - 24 + 14x^3 = 0 \][/tex]

Factor:
[tex]\[ 2(x^2 - 4) + x^3 = 0 \][/tex]

Solve for [tex]\( x \)[/tex]:
[tex]\[ 2x^3 + 6x - 8x = 0 \][/tex]
[tex]\[ x(2x^2 + 6 - 8) = 0 \][/tex]

[tex]\[ x = 0 \][/tex]

For higher order terms:
[tex]\[ x^3 + \frac{14}{7}(x^2 - 4) = 0 \][/tex]

Solving cubic eliminates real roots:
[tex]\[ x = +1.095, -1.095\][/tex]

### Step 3: Local Maxima and Minima
To determine whether these critical points are maxima or minima, use the second derivative test:

[tex]\[ \frac{d^2y}{dx^2} \][/tex]

Local Maxima: No local maximum point exists.

Local Minima: The critical points [tex]\( +1.095 \)[/tex] and [tex]\( -1.095 \)[/tex] and their corresponding y-values are:

Plug into the original function to find [tex]\( y \)[/tex]:
[tex]\[ y(-1.095) = (-1.095)^{6/7} \times (-1.095^2 - 4) = -3.028 \][/tex]
Similarlity opposite points:
[tex]\[ y(1.095) = (-1.095)^{6/7} \times (-1.095^2 - 4) = -3.028 \][/tex]

### Step 4: Absolute Maxima
Evaluate the value's if maxima:
[tex]\[ y'(0) \][/tex]

Values not yielded thus,
Answer:
A. (-1.095, -3.028),(1.095, -3.028)