Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's start with the given equation:
[tex]\[ c^2 = b^2 + d^2 - 2cd \][/tex]
Our goal is to solve for [tex]\( b \)[/tex] in terms of [tex]\( c \)[/tex] and [tex]\( d \)[/tex]. Here's the step-by-step solution:
1. Rearrange the equation to isolate [tex]\( b^2 \)[/tex]:
[tex]\[ c^2 = b^2 + d^2 - 2cd \][/tex]
2. Move [tex]\( d^2 \)[/tex] and [tex]\( -2cd \)[/tex] to the other side:
[tex]\[ b^2 = c^2 - d^2 + 2cd \][/tex]
3. Take the square root of both sides to solve for [tex]\( b \)[/tex]. Since we want the positive value of [tex]\( b \)[/tex]:
[tex]\[ b = \sqrt{c^2 - d^2 + 2cd} \][/tex]
Now, let's compare this expression with the given options:
- Option A: [tex]\(\sqrt{c^2 + d^2 - 2cd}\)[/tex]
- Option B: [tex]\(\sqrt{c^2 + d^2 + 2cd}\)[/tex]
- Option C: [tex]\(\sqrt{c^2 - d^2 - 2cd}\)[/tex]
- Option D: [tex]\(\sqrt{c^2 - d^2 + 2cd}\)[/tex]
The correct expression that is equivalent to the positive value of [tex]\( b \)[/tex] is:
[tex]\[ \sqrt{c^2 - d^2 + 2cd} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
[tex]\[ c^2 = b^2 + d^2 - 2cd \][/tex]
Our goal is to solve for [tex]\( b \)[/tex] in terms of [tex]\( c \)[/tex] and [tex]\( d \)[/tex]. Here's the step-by-step solution:
1. Rearrange the equation to isolate [tex]\( b^2 \)[/tex]:
[tex]\[ c^2 = b^2 + d^2 - 2cd \][/tex]
2. Move [tex]\( d^2 \)[/tex] and [tex]\( -2cd \)[/tex] to the other side:
[tex]\[ b^2 = c^2 - d^2 + 2cd \][/tex]
3. Take the square root of both sides to solve for [tex]\( b \)[/tex]. Since we want the positive value of [tex]\( b \)[/tex]:
[tex]\[ b = \sqrt{c^2 - d^2 + 2cd} \][/tex]
Now, let's compare this expression with the given options:
- Option A: [tex]\(\sqrt{c^2 + d^2 - 2cd}\)[/tex]
- Option B: [tex]\(\sqrt{c^2 + d^2 + 2cd}\)[/tex]
- Option C: [tex]\(\sqrt{c^2 - d^2 - 2cd}\)[/tex]
- Option D: [tex]\(\sqrt{c^2 - d^2 + 2cd}\)[/tex]
The correct expression that is equivalent to the positive value of [tex]\( b \)[/tex] is:
[tex]\[ \sqrt{c^2 - d^2 + 2cd} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.