Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To simplify the expression [tex]\(\frac{4 x^2 + 36}{4 x} \cdot \frac{1}{5 x}\)[/tex], follow these steps:
1. Factor and Simplify the First Fraction:
[tex]\[ \frac{4 x^2 + 36}{4 x} \][/tex]
Notice that [tex]\(4 x^2 + 36\)[/tex] can be factored:
[tex]\[ 4 x^2 + 36 = 4(x^2 + 9) \][/tex]
So, we have:
[tex]\[ \frac{4(x^2 + 9)}{4 x} \][/tex]
Simplify the fraction by canceling the common factor of [tex]\(4\)[/tex]:
[tex]\[ \frac{x^2 + 9}{x} \][/tex]
2. Multiply by the Second Fraction:
Now we need to multiply [tex]\(\frac{x^2 + 9}{x}\)[/tex] by [tex]\(\frac{1}{5 x}\)[/tex]:
[tex]\[ \frac{x^2 + 9}{x} \cdot \frac{1}{5 x} \][/tex]
3. Combine the Fractions:
When multiplying fractions, multiply the numerators together and the denominators together:
[tex]\[ \frac{(x^2 + 9) \cdot 1}{x \cdot 5 x} = \frac{x^2 + 9}{5 x^2} \][/tex]
Therefore, the simplified form of the expression [tex]\(\frac{4 x^2 + 36}{4 x} \cdot \frac{1}{5 x}\)[/tex] is:
[tex]\[ \boxed{\frac{x^2 + 9}{5 x^2}} \][/tex]
Given the multiple choice options, the correct answer is:
C. [tex]\(\frac{x^2 + 9}{5 x^2}\)[/tex]
1. Factor and Simplify the First Fraction:
[tex]\[ \frac{4 x^2 + 36}{4 x} \][/tex]
Notice that [tex]\(4 x^2 + 36\)[/tex] can be factored:
[tex]\[ 4 x^2 + 36 = 4(x^2 + 9) \][/tex]
So, we have:
[tex]\[ \frac{4(x^2 + 9)}{4 x} \][/tex]
Simplify the fraction by canceling the common factor of [tex]\(4\)[/tex]:
[tex]\[ \frac{x^2 + 9}{x} \][/tex]
2. Multiply by the Second Fraction:
Now we need to multiply [tex]\(\frac{x^2 + 9}{x}\)[/tex] by [tex]\(\frac{1}{5 x}\)[/tex]:
[tex]\[ \frac{x^2 + 9}{x} \cdot \frac{1}{5 x} \][/tex]
3. Combine the Fractions:
When multiplying fractions, multiply the numerators together and the denominators together:
[tex]\[ \frac{(x^2 + 9) \cdot 1}{x \cdot 5 x} = \frac{x^2 + 9}{5 x^2} \][/tex]
Therefore, the simplified form of the expression [tex]\(\frac{4 x^2 + 36}{4 x} \cdot \frac{1}{5 x}\)[/tex] is:
[tex]\[ \boxed{\frac{x^2 + 9}{5 x^2}} \][/tex]
Given the multiple choice options, the correct answer is:
C. [tex]\(\frac{x^2 + 9}{5 x^2}\)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.