Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Which ordered pair makes both inequalities true?

[tex]\[
\begin{array}{l}
y \ \textgreater \ -2x + 3 \\
y \leq x - 2
\end{array}
\][/tex]


Sagot :

To determine which ordered pair makes both inequalities true, we need to check each pair against the given inequalities:
[tex]\[ \begin{array}{l} (1) \: y > -2x + 3 \\ (2) \: y \leq x - 2 \end{array} \][/tex]

Let's evaluate each pair step-by-step:

1. Pair [tex]\((-1, 1)\)[/tex]:
- For the first inequality: [tex]\( y > -2x + 3 \)[/tex]
[tex]\[ 1 > -2(-1) + 3 \][/tex]
[tex]\[ 1 > 2 + 3 \][/tex]
[tex]\[ 1 > 5 \quad \text{(False)} \][/tex]
- Since the first inequality is not satisfied, [tex]\((-1, 1)\)[/tex] does not satisfy both inequalities.

2. Pair [tex]\((0, -1)\)[/tex]:
- For the first inequality: [tex]\( y > -2x + 3 \)[/tex]
[tex]\[ -1 > -2(0) + 3 \][/tex]
[tex]\[ -1 > 3 \quad \text{(False)} \][/tex]
- Since the first inequality is not satisfied, [tex]\((0, -1)\)[/tex] does not satisfy both inequalities.

3. Pair [tex]\((1, -1)\)[/tex]:
- For the first inequality: [tex]\( y > -2x + 3 \)[/tex]
[tex]\[ -1 > -2(1) + 3 \][/tex]
[tex]\[ -1 > -2 + 3 \][/tex]
[tex]\[ -1 > 1 \quad \text{(False)} \][/tex]
- Since the first inequality is not satisfied, [tex]\((1, -1)\)[/tex] does not satisfy both inequalities.

4. Pair [tex]\((2, 0)\)[/tex]:
- For the first inequality: [tex]\( y > -2x + 3 \)[/tex]
[tex]\[ 0 > -2(2) + 3 \][/tex]
[tex]\[ 0 > -4 + 3 \][/tex]
[tex]\[ 0 > -1 \quad \text{(True)} \][/tex]
- For the second inequality: [tex]\( y \leq x - 2 \)[/tex]
[tex]\[ 0 \leq 2 - 2 \][/tex]
[tex]\[ 0 \leq 0 \quad \text{(True)} \][/tex]
- Since both inequalities are satisfied, [tex]\((2, 0)\)[/tex] does satisfy both inequalities.

Therefore, the ordered pair [tex]\((2, 0)\)[/tex] makes both inequalities true.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.