Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure! Let's go through the step-by-step process to differentiate the function [tex]\( w = \sin(xy) + y \ln(xz) + z \)[/tex] with respect to [tex]\( t \)[/tex], given that [tex]\( x = e^t \)[/tex], [tex]\( y = t^2 \)[/tex], and [tex]\( z = 1 \)[/tex].
1. Substitute the expressions for [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]:
Given:
[tex]\[ x = e^t, \quad y = t^2, \quad z = 1 \][/tex]
Substitute these into [tex]\( w \)[/tex]:
[tex]\[ w = \sin(xy) + y \ln(xz) + z = \sin(t^2 e^t) + t^2 \ln(e^t \cdot 1) + 1 \][/tex]
2. Simplify the expression:
[tex]\[ w = \sin(t^2 e^t) + t^2 \ln(e^t) + 1 \][/tex]
Since [tex]\(\ln(e^t) = t\)[/tex], the expression further simplifies:
[tex]\[ w = \sin(t^2 e^t) + t^2 t + 1 = \sin(t^2 e^t) + t^3 + 1 \][/tex]
3. Find the derivative [tex]\( \frac{d w}{d t} \)[/tex]:
Now, we need to differentiate [tex]\( w \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{d w}{d t} = \frac{d}{d t} \left( \sin(t^2 e^t) + t^3 + 1 \right) \][/tex]
4. Differentiate each term one by one:
- The derivative of [tex]\( \sin(t^2 e^t) \)[/tex]:
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) \][/tex]
Apply the chain rule. Let [tex]\( u = t^2 e^t \)[/tex], so we need to use the chain rule [tex]\(\frac{d}{d t} \sin(u) = \cos(u) \cdot \frac{d u}{d t} \)[/tex]:
[tex]\[ \frac{d u}{d t} = \frac{d}{d t} (t^2 e^t) \][/tex]
Differentiate [tex]\( t^2 e^t \)[/tex] using the product rule:
[tex]\[ \frac{d}{d t} (t^2 e^t) = 2t e^t + t^2 e^t = e^t (2t + t^2) = t e^t (2 + t) \][/tex]
Thus,
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) = \cos(t^2 e^t) \cdot t e^t (2 + t) \][/tex]
- The derivative of [tex]\( t^3 \)[/tex]:
[tex]\[ \frac{d}{d t} (t^3) = 3t^2 \][/tex]
- The derivative of the constant term [tex]\( 1 \)[/tex]:
[tex]\[ \frac{d}{d t} (1) = 0 \][/tex]
5. Combine all parts:
[tex]\[ \frac{d w}{d t} = \cos(t^2 e^t) \cdot t e^t (2 + t) + 3t^2 \][/tex]
Simplify:
[tex]\[ \frac{d w}{d t} = t e^t (2 + t) \cos(t^2 e^t) + 3t^2 \][/tex]
So the derivative [tex]\( \frac{d w}{d t} \)[/tex] is:
[tex]\[ \boxed{\frac{d w}{d t} = t^2 + 2t + (t^2 e^t + 2t e^t) \cos(t^2 e^t)} \][/tex]
1. Substitute the expressions for [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]:
Given:
[tex]\[ x = e^t, \quad y = t^2, \quad z = 1 \][/tex]
Substitute these into [tex]\( w \)[/tex]:
[tex]\[ w = \sin(xy) + y \ln(xz) + z = \sin(t^2 e^t) + t^2 \ln(e^t \cdot 1) + 1 \][/tex]
2. Simplify the expression:
[tex]\[ w = \sin(t^2 e^t) + t^2 \ln(e^t) + 1 \][/tex]
Since [tex]\(\ln(e^t) = t\)[/tex], the expression further simplifies:
[tex]\[ w = \sin(t^2 e^t) + t^2 t + 1 = \sin(t^2 e^t) + t^3 + 1 \][/tex]
3. Find the derivative [tex]\( \frac{d w}{d t} \)[/tex]:
Now, we need to differentiate [tex]\( w \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{d w}{d t} = \frac{d}{d t} \left( \sin(t^2 e^t) + t^3 + 1 \right) \][/tex]
4. Differentiate each term one by one:
- The derivative of [tex]\( \sin(t^2 e^t) \)[/tex]:
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) \][/tex]
Apply the chain rule. Let [tex]\( u = t^2 e^t \)[/tex], so we need to use the chain rule [tex]\(\frac{d}{d t} \sin(u) = \cos(u) \cdot \frac{d u}{d t} \)[/tex]:
[tex]\[ \frac{d u}{d t} = \frac{d}{d t} (t^2 e^t) \][/tex]
Differentiate [tex]\( t^2 e^t \)[/tex] using the product rule:
[tex]\[ \frac{d}{d t} (t^2 e^t) = 2t e^t + t^2 e^t = e^t (2t + t^2) = t e^t (2 + t) \][/tex]
Thus,
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) = \cos(t^2 e^t) \cdot t e^t (2 + t) \][/tex]
- The derivative of [tex]\( t^3 \)[/tex]:
[tex]\[ \frac{d}{d t} (t^3) = 3t^2 \][/tex]
- The derivative of the constant term [tex]\( 1 \)[/tex]:
[tex]\[ \frac{d}{d t} (1) = 0 \][/tex]
5. Combine all parts:
[tex]\[ \frac{d w}{d t} = \cos(t^2 e^t) \cdot t e^t (2 + t) + 3t^2 \][/tex]
Simplify:
[tex]\[ \frac{d w}{d t} = t e^t (2 + t) \cos(t^2 e^t) + 3t^2 \][/tex]
So the derivative [tex]\( \frac{d w}{d t} \)[/tex] is:
[tex]\[ \boxed{\frac{d w}{d t} = t^2 + 2t + (t^2 e^t + 2t e^t) \cos(t^2 e^t)} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.