Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's go through the step-by-step process to differentiate the function [tex]\( w = \sin(xy) + y \ln(xz) + z \)[/tex] with respect to [tex]\( t \)[/tex], given that [tex]\( x = e^t \)[/tex], [tex]\( y = t^2 \)[/tex], and [tex]\( z = 1 \)[/tex].
1. Substitute the expressions for [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]:
Given:
[tex]\[ x = e^t, \quad y = t^2, \quad z = 1 \][/tex]
Substitute these into [tex]\( w \)[/tex]:
[tex]\[ w = \sin(xy) + y \ln(xz) + z = \sin(t^2 e^t) + t^2 \ln(e^t \cdot 1) + 1 \][/tex]
2. Simplify the expression:
[tex]\[ w = \sin(t^2 e^t) + t^2 \ln(e^t) + 1 \][/tex]
Since [tex]\(\ln(e^t) = t\)[/tex], the expression further simplifies:
[tex]\[ w = \sin(t^2 e^t) + t^2 t + 1 = \sin(t^2 e^t) + t^3 + 1 \][/tex]
3. Find the derivative [tex]\( \frac{d w}{d t} \)[/tex]:
Now, we need to differentiate [tex]\( w \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{d w}{d t} = \frac{d}{d t} \left( \sin(t^2 e^t) + t^3 + 1 \right) \][/tex]
4. Differentiate each term one by one:
- The derivative of [tex]\( \sin(t^2 e^t) \)[/tex]:
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) \][/tex]
Apply the chain rule. Let [tex]\( u = t^2 e^t \)[/tex], so we need to use the chain rule [tex]\(\frac{d}{d t} \sin(u) = \cos(u) \cdot \frac{d u}{d t} \)[/tex]:
[tex]\[ \frac{d u}{d t} = \frac{d}{d t} (t^2 e^t) \][/tex]
Differentiate [tex]\( t^2 e^t \)[/tex] using the product rule:
[tex]\[ \frac{d}{d t} (t^2 e^t) = 2t e^t + t^2 e^t = e^t (2t + t^2) = t e^t (2 + t) \][/tex]
Thus,
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) = \cos(t^2 e^t) \cdot t e^t (2 + t) \][/tex]
- The derivative of [tex]\( t^3 \)[/tex]:
[tex]\[ \frac{d}{d t} (t^3) = 3t^2 \][/tex]
- The derivative of the constant term [tex]\( 1 \)[/tex]:
[tex]\[ \frac{d}{d t} (1) = 0 \][/tex]
5. Combine all parts:
[tex]\[ \frac{d w}{d t} = \cos(t^2 e^t) \cdot t e^t (2 + t) + 3t^2 \][/tex]
Simplify:
[tex]\[ \frac{d w}{d t} = t e^t (2 + t) \cos(t^2 e^t) + 3t^2 \][/tex]
So the derivative [tex]\( \frac{d w}{d t} \)[/tex] is:
[tex]\[ \boxed{\frac{d w}{d t} = t^2 + 2t + (t^2 e^t + 2t e^t) \cos(t^2 e^t)} \][/tex]
1. Substitute the expressions for [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]:
Given:
[tex]\[ x = e^t, \quad y = t^2, \quad z = 1 \][/tex]
Substitute these into [tex]\( w \)[/tex]:
[tex]\[ w = \sin(xy) + y \ln(xz) + z = \sin(t^2 e^t) + t^2 \ln(e^t \cdot 1) + 1 \][/tex]
2. Simplify the expression:
[tex]\[ w = \sin(t^2 e^t) + t^2 \ln(e^t) + 1 \][/tex]
Since [tex]\(\ln(e^t) = t\)[/tex], the expression further simplifies:
[tex]\[ w = \sin(t^2 e^t) + t^2 t + 1 = \sin(t^2 e^t) + t^3 + 1 \][/tex]
3. Find the derivative [tex]\( \frac{d w}{d t} \)[/tex]:
Now, we need to differentiate [tex]\( w \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{d w}{d t} = \frac{d}{d t} \left( \sin(t^2 e^t) + t^3 + 1 \right) \][/tex]
4. Differentiate each term one by one:
- The derivative of [tex]\( \sin(t^2 e^t) \)[/tex]:
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) \][/tex]
Apply the chain rule. Let [tex]\( u = t^2 e^t \)[/tex], so we need to use the chain rule [tex]\(\frac{d}{d t} \sin(u) = \cos(u) \cdot \frac{d u}{d t} \)[/tex]:
[tex]\[ \frac{d u}{d t} = \frac{d}{d t} (t^2 e^t) \][/tex]
Differentiate [tex]\( t^2 e^t \)[/tex] using the product rule:
[tex]\[ \frac{d}{d t} (t^2 e^t) = 2t e^t + t^2 e^t = e^t (2t + t^2) = t e^t (2 + t) \][/tex]
Thus,
[tex]\[ \frac{d}{d t} \sin(t^2 e^t) = \cos(t^2 e^t) \cdot t e^t (2 + t) \][/tex]
- The derivative of [tex]\( t^3 \)[/tex]:
[tex]\[ \frac{d}{d t} (t^3) = 3t^2 \][/tex]
- The derivative of the constant term [tex]\( 1 \)[/tex]:
[tex]\[ \frac{d}{d t} (1) = 0 \][/tex]
5. Combine all parts:
[tex]\[ \frac{d w}{d t} = \cos(t^2 e^t) \cdot t e^t (2 + t) + 3t^2 \][/tex]
Simplify:
[tex]\[ \frac{d w}{d t} = t e^t (2 + t) \cos(t^2 e^t) + 3t^2 \][/tex]
So the derivative [tex]\( \frac{d w}{d t} \)[/tex] is:
[tex]\[ \boxed{\frac{d w}{d t} = t^2 + 2t + (t^2 e^t + 2t e^t) \cos(t^2 e^t)} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.