Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's go through each part of the question step-by-step.
### (a) Domain of [tex]\( f \)[/tex]
The domain of a function consists of all the possible input values (x, y) for which the function is defined.
For [tex]\( f(x, y) = -\sqrt{x^2 + y^2} \)[/tex], the expression inside the square root [tex]\( x^2 + y^2 \)[/tex] must be non-negative (since the square root of a negative number is not real).
However, [tex]\( x^2 + y^2 \geq 0 \)[/tex] for all real numbers [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Therefore, the domain of [tex]\( f \)[/tex] is all pairs of real numbers [tex]\( (x, y) \)[/tex].
[tex]\[ \text{Domain of } f = \{(x, y) \in \mathbb{R}^2\} \][/tex]
or more simply:
[tex]\[ \text{Domain of } f = \mathbb{R}^2 \][/tex]
### (b) Range of [tex]\( f \)[/tex]
The range of a function consists of all the possible output values of the function.
Considering [tex]\( f(x, y) = -\sqrt{x^2 + y^2} \)[/tex], note that [tex]\( \sqrt{x^2 + y^2} \)[/tex] is always non-negative.
[tex]\[ \sqrt{x^2 + y^2} \geq 0 \][/tex]
Therefore, [tex]\( - \sqrt{x^2 + y^2} \)[/tex] is always non-positive.
[tex]\[ -\sqrt{x^2 + y^2} \leq 0 \][/tex]
The smallest value of [tex]\(\sqrt{x^2 + y^2}\)[/tex] is 0 (which happens when [tex]\(x = 0\)[/tex] and [tex]\(y = 0\)[/tex]), so the largest value of [tex]\( -\sqrt{x^2 + y^2} \)[/tex] is 0.
Hence, the range of [tex]\( f \)[/tex] is:
[tex]\[ \text{Range of } f = (-\infty, 0] \][/tex]
### (c) Sketch the level curve of [tex]\( f(x, y) = c \)[/tex], for [tex]\( c = 0, 1, 2 \)[/tex]
Level curves are found by setting [tex]\( f(x, y) = c \)[/tex]:
[tex]\[ - \sqrt{x^2 + y^2} = c \][/tex]
This can be rewritten as:
[tex]\[ \sqrt{x^2 + y^2} = -c \][/tex]
Since [tex]\( \sqrt{x^2 + y^2} \)[/tex] is non-negative and [tex]\( -c \)[/tex] is non-positive, [tex]\( -c \)[/tex] must be non-negative. This forces [tex]\( c \)[/tex] to be non-positive: [tex]\( c \leq 0 \)[/tex].
- For [tex]\( c = 0 \)[/tex]:
[tex]\[ \sqrt{x^2 + y^2} = 0 \implies x^2 + y^2 = 0 \implies x = 0 \text{ and } y = 0 \][/tex]
This is just the origin point [tex]\( (0,0) \)[/tex].
- For [tex]\( c = 1 \)[/tex]:
[tex]\[ \sqrt{x^2 + y^2} = -1 \implies \text{No solution, since } \sqrt{x^2 + y^2} \geq 0 \][/tex]
Thus, there is no level curve for [tex]\( c = 1 \)[/tex].
- For [tex]\( c = 2 \)[/tex]:
[tex]\[ \sqrt{x^2 + y^2} = -2 \implies \text{No solution, since } \sqrt{x^2 + y^2} \geq 0 \][/tex]
Thus, there is no level curve for [tex]\( c = 2 \)[/tex].
Hence, the only level curve for the given values of [tex]\( c \)[/tex] that exists is the single point at the origin for [tex]\( c = 0 \)[/tex].
### (d) Sketch the graph of [tex]\( f \)[/tex]
The function [tex]\( f(x, y) = -\sqrt{x^2 + y^2} \)[/tex] represents a surface in three-dimensional space. To sketch this, remember:
- The function reaches its maximum value of 0 when [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex].
- As [tex]\( x^2 + y^2 \)[/tex] increases, [tex]\( \sqrt{x^2 + y^2} \)[/tex] increases, making [tex]\( -\sqrt{x^2 + y^2} \)[/tex] decrease (become more negative).
This surface is a downward-opening cone with its tip at the origin (0,0,0). Every cross-section of this surface parallel to the [tex]\( xy \)[/tex]-plane (for fixed [tex]\( z \)[/tex]) is a circle.
### (e) Find [tex]\( f_x (x, y) \)[/tex] and [tex]\( f_y (x, y) \)[/tex]
To find the partial derivatives, we differentiate [tex]\( f(x, y) = -\sqrt{x^2 + y^2} \)[/tex] with respect to [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
[tex]\[ f_x (x, y) = \frac{\partial}{\partial x} \left( -\sqrt{x^2 + y^2} \right) \][/tex]
Using the chain rule:
[tex]\[ f_x (x, y) = - \frac{x}{\sqrt{x^2 + y^2}} \][/tex]
Similarly, for [tex]\( y \)[/tex]:
[tex]\[ f_y (x, y) = \frac{\partial}{\partial y} \left( -\sqrt{x^2 + y^2} \right) \][/tex]
Using the chain rule:
[tex]\[ f_y (x, y) = - \frac{y}{\sqrt{x^2 + y^2}} \][/tex]
Thus, the partial derivatives are:
[tex]\[ f_x (x, y) = - \frac{x}{\sqrt{x^2 + y^2}}, \quad f_y (x, y) = - \frac{y}{\sqrt{x^2 + y^2}} \][/tex]
These derivatives describe the rate of change of [tex]\( f \)[/tex] in the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] directions respectively.
### (a) Domain of [tex]\( f \)[/tex]
The domain of a function consists of all the possible input values (x, y) for which the function is defined.
For [tex]\( f(x, y) = -\sqrt{x^2 + y^2} \)[/tex], the expression inside the square root [tex]\( x^2 + y^2 \)[/tex] must be non-negative (since the square root of a negative number is not real).
However, [tex]\( x^2 + y^2 \geq 0 \)[/tex] for all real numbers [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Therefore, the domain of [tex]\( f \)[/tex] is all pairs of real numbers [tex]\( (x, y) \)[/tex].
[tex]\[ \text{Domain of } f = \{(x, y) \in \mathbb{R}^2\} \][/tex]
or more simply:
[tex]\[ \text{Domain of } f = \mathbb{R}^2 \][/tex]
### (b) Range of [tex]\( f \)[/tex]
The range of a function consists of all the possible output values of the function.
Considering [tex]\( f(x, y) = -\sqrt{x^2 + y^2} \)[/tex], note that [tex]\( \sqrt{x^2 + y^2} \)[/tex] is always non-negative.
[tex]\[ \sqrt{x^2 + y^2} \geq 0 \][/tex]
Therefore, [tex]\( - \sqrt{x^2 + y^2} \)[/tex] is always non-positive.
[tex]\[ -\sqrt{x^2 + y^2} \leq 0 \][/tex]
The smallest value of [tex]\(\sqrt{x^2 + y^2}\)[/tex] is 0 (which happens when [tex]\(x = 0\)[/tex] and [tex]\(y = 0\)[/tex]), so the largest value of [tex]\( -\sqrt{x^2 + y^2} \)[/tex] is 0.
Hence, the range of [tex]\( f \)[/tex] is:
[tex]\[ \text{Range of } f = (-\infty, 0] \][/tex]
### (c) Sketch the level curve of [tex]\( f(x, y) = c \)[/tex], for [tex]\( c = 0, 1, 2 \)[/tex]
Level curves are found by setting [tex]\( f(x, y) = c \)[/tex]:
[tex]\[ - \sqrt{x^2 + y^2} = c \][/tex]
This can be rewritten as:
[tex]\[ \sqrt{x^2 + y^2} = -c \][/tex]
Since [tex]\( \sqrt{x^2 + y^2} \)[/tex] is non-negative and [tex]\( -c \)[/tex] is non-positive, [tex]\( -c \)[/tex] must be non-negative. This forces [tex]\( c \)[/tex] to be non-positive: [tex]\( c \leq 0 \)[/tex].
- For [tex]\( c = 0 \)[/tex]:
[tex]\[ \sqrt{x^2 + y^2} = 0 \implies x^2 + y^2 = 0 \implies x = 0 \text{ and } y = 0 \][/tex]
This is just the origin point [tex]\( (0,0) \)[/tex].
- For [tex]\( c = 1 \)[/tex]:
[tex]\[ \sqrt{x^2 + y^2} = -1 \implies \text{No solution, since } \sqrt{x^2 + y^2} \geq 0 \][/tex]
Thus, there is no level curve for [tex]\( c = 1 \)[/tex].
- For [tex]\( c = 2 \)[/tex]:
[tex]\[ \sqrt{x^2 + y^2} = -2 \implies \text{No solution, since } \sqrt{x^2 + y^2} \geq 0 \][/tex]
Thus, there is no level curve for [tex]\( c = 2 \)[/tex].
Hence, the only level curve for the given values of [tex]\( c \)[/tex] that exists is the single point at the origin for [tex]\( c = 0 \)[/tex].
### (d) Sketch the graph of [tex]\( f \)[/tex]
The function [tex]\( f(x, y) = -\sqrt{x^2 + y^2} \)[/tex] represents a surface in three-dimensional space. To sketch this, remember:
- The function reaches its maximum value of 0 when [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex].
- As [tex]\( x^2 + y^2 \)[/tex] increases, [tex]\( \sqrt{x^2 + y^2} \)[/tex] increases, making [tex]\( -\sqrt{x^2 + y^2} \)[/tex] decrease (become more negative).
This surface is a downward-opening cone with its tip at the origin (0,0,0). Every cross-section of this surface parallel to the [tex]\( xy \)[/tex]-plane (for fixed [tex]\( z \)[/tex]) is a circle.
### (e) Find [tex]\( f_x (x, y) \)[/tex] and [tex]\( f_y (x, y) \)[/tex]
To find the partial derivatives, we differentiate [tex]\( f(x, y) = -\sqrt{x^2 + y^2} \)[/tex] with respect to [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
[tex]\[ f_x (x, y) = \frac{\partial}{\partial x} \left( -\sqrt{x^2 + y^2} \right) \][/tex]
Using the chain rule:
[tex]\[ f_x (x, y) = - \frac{x}{\sqrt{x^2 + y^2}} \][/tex]
Similarly, for [tex]\( y \)[/tex]:
[tex]\[ f_y (x, y) = \frac{\partial}{\partial y} \left( -\sqrt{x^2 + y^2} \right) \][/tex]
Using the chain rule:
[tex]\[ f_y (x, y) = - \frac{y}{\sqrt{x^2 + y^2}} \][/tex]
Thus, the partial derivatives are:
[tex]\[ f_x (x, y) = - \frac{x}{\sqrt{x^2 + y^2}}, \quad f_y (x, y) = - \frac{y}{\sqrt{x^2 + y^2}} \][/tex]
These derivatives describe the rate of change of [tex]\( f \)[/tex] in the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] directions respectively.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.