At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Determine the total number of roots of each polynomial function using the factored form.

1. [tex]\( f(x) = (x + 1)(x - 3)(x - 4) \)[/tex]

2. [tex]\( f(x) = (x - 6)^2 (x + 2)^2 \)[/tex]

3. [tex]\( f(x) = (x + 5)^3 (x - 9)(x + 1) \)[/tex]

4. [tex]\( f(x) = (x + 2)(x - 1)[x - (4 + 3i)][x - (4 - 3i)] \)[/tex]

Sagot :

Let's determine the total number of roots for each polynomial given in their factored forms by counting their distinct factors, taking into account the multiplicity of each factor:

1. First Polynomial:
[tex]\[ f(x) = (x+1)(x-3)(x-4) \][/tex]
- The factors are [tex]\(x + 1\)[/tex], [tex]\(x - 3\)[/tex], and [tex]\(x - 4\)[/tex].
- Each factor corresponds to one root.
- Therefore, the total number of roots is [tex]\(3\)[/tex].

2. Second Polynomial:
[tex]\[ f(x) = (x-6)^2(x+2)^2 \][/tex]
- The factors are [tex]\((x - 6)^2\)[/tex] and [tex]\((x + 2)^2\)[/tex].
- Each factor [tex]\((x - 6)^2\)[/tex] and [tex]\((x + 2)^2\)[/tex] has multiplicity 2.
- Therefore, the total number of roots is [tex]\(2 + 2 = 4\)[/tex].

3. Third Polynomial:
[tex]\[ f(x) = (x+5)^3(x-9)(x+1) \][/tex]
- The factors are [tex]\((x + 5)^3\)[/tex], [tex]\((x - 9)\)[/tex], and [tex]\((x + 1)\)[/tex].
- The factor [tex]\((x + 5)^3\)[/tex] has multiplicity 3, while [tex]\((x - 9)\)[/tex] and [tex]\((x + 1)\)[/tex] each have multiplicity 1.
- Therefore, the total number of roots is [tex]\(3 + 1 + 1 = 5\)[/tex].

4. Fourth Polynomial:
[tex]\[ f(x) = (x + 2)(x - 1)[x - (4 + 3i)][x - (4 - 3i)] \][/tex]
- The factors are [tex]\(x + 2\)[/tex], [tex]\(x - 1\)[/tex], [tex]\(x - (4 + 3i)\)[/tex], and [tex]\(x - (4 - 3i)\)[/tex].
- Each factor corresponds to one root.
- Therefore, the total number of roots is [tex]\(1 + 1 + 1 + 1 = 4\)[/tex].

Summarizing:
- For the polynomial [tex]\(f(x) = (x + 1)(x - 3)(x - 4)\)[/tex], the total number of roots is 3.
- For the polynomial [tex]\(f(x) = (x - 6)^2(x + 2)^2\)[/tex], the total number of roots is 4.
- For the polynomial [tex]\(f(x) = (x + 5)^3(x - 9)(x + 1)\)[/tex], the total number of roots is 5.
- For the polynomial [tex]\(f(x) = (x + 2)(x - 1)[x - (4 + 3i)][x - (4 - 3i)]\)[/tex], the total number of roots is 4.