At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To answer whether the given statements are true (T) or false (F), we need to analyze each statement individually:
### Statement 1: The domain of [tex]\(\tan(x)\)[/tex] is all real numbers.
The function [tex]\(\tan(x)\)[/tex] is defined as [tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex]. The domain of [tex]\(\tan(x)\)[/tex] will thus be all real numbers for which [tex]\(\cos(x) \neq 0\)[/tex]. The values of [tex]\(x\)[/tex] where [tex]\(\cos(x) = 0\)[/tex] are [tex]\(x = \frac{(2n+1)\pi}{2}\)[/tex] for any integer [tex]\(n\)[/tex]. Therefore, [tex]\(\tan(x)\)[/tex] is not defined at these points, and the domain of [tex]\(\tan(x)\)[/tex] is not all real numbers. Thus, the statement is False.
- Answer: [tex]\( F \)[/tex]
### Statement 2: [tex]\( y = \tan(2x) \)[/tex] has period [tex]\( \pi \)[/tex].
The period of the standard tangent function [tex]\( y = \tan(x) \)[/tex] is [tex]\( \pi \)[/tex], which means it repeats its values every [tex]\( \pi \)[/tex] units. However, for [tex]\( y = \tan(2x) \)[/tex], the period will be scaled by a factor of [tex]\(\frac{1}{2}\)[/tex]. This results in a period of [tex]\( \frac{\pi}{2} \)[/tex]. Hence, the statement that the period is [tex]\( \pi \)[/tex] is False.
- Answer: [tex]\( F \)[/tex]
### Statement 3: [tex]\(\tan(x)\)[/tex] and [tex]\(\cot(x)\)[/tex] are odd functions.
A function [tex]\( f(x) \)[/tex] is odd if [tex]\( f(-x) = -f(x) \)[/tex]. For [tex]\(\tan(x)\)[/tex],
[tex]\[ \tan(-x) = -\tan(x) \][/tex]
and for [tex]\(\cot(x)\)[/tex],
[tex]\[ \cot(-x) = -\cot(x) \][/tex]
These properties confirm that both [tex]\(\tan(x)\)[/tex] and [tex]\(\cot(x)\)[/tex] are odd functions. Thus, the statement is True.
- Answer: [tex]\( T \)[/tex]
### Statement 4: [tex]\(\sec(x)\)[/tex] and [tex]\(\tan(x)\)[/tex] are undefined for the same values of [tex]\(x\)[/tex].
The secant function [tex]\(\sec(x) = \frac{1}{\cos(x)}\)[/tex] is undefined where [tex]\(\cos(x) = 0\)[/tex]. Similarly, as previously discussed, [tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex] is also undefined where [tex]\(\cos(x) = 0\)[/tex]. These points are [tex]\(x = \frac{(2n+1)\pi}{2}\)[/tex] for any integer [tex]\(n\)[/tex]. Therefore, [tex]\(\sec(x)\)[/tex] and [tex]\(\tan(x)\)[/tex] are indeed undefined for the same values of [tex]\(x\)[/tex]. Thus, the statement is True.
- Answer: [tex]\( T \)[/tex]
Therefore, the final answers to the statements are:
1. [tex]\( F \)[/tex]
2. [tex]\( F \)[/tex]
3. [tex]\( T \)[/tex]
4. [tex]\( T \)[/tex]
### Statement 1: The domain of [tex]\(\tan(x)\)[/tex] is all real numbers.
The function [tex]\(\tan(x)\)[/tex] is defined as [tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex]. The domain of [tex]\(\tan(x)\)[/tex] will thus be all real numbers for which [tex]\(\cos(x) \neq 0\)[/tex]. The values of [tex]\(x\)[/tex] where [tex]\(\cos(x) = 0\)[/tex] are [tex]\(x = \frac{(2n+1)\pi}{2}\)[/tex] for any integer [tex]\(n\)[/tex]. Therefore, [tex]\(\tan(x)\)[/tex] is not defined at these points, and the domain of [tex]\(\tan(x)\)[/tex] is not all real numbers. Thus, the statement is False.
- Answer: [tex]\( F \)[/tex]
### Statement 2: [tex]\( y = \tan(2x) \)[/tex] has period [tex]\( \pi \)[/tex].
The period of the standard tangent function [tex]\( y = \tan(x) \)[/tex] is [tex]\( \pi \)[/tex], which means it repeats its values every [tex]\( \pi \)[/tex] units. However, for [tex]\( y = \tan(2x) \)[/tex], the period will be scaled by a factor of [tex]\(\frac{1}{2}\)[/tex]. This results in a period of [tex]\( \frac{\pi}{2} \)[/tex]. Hence, the statement that the period is [tex]\( \pi \)[/tex] is False.
- Answer: [tex]\( F \)[/tex]
### Statement 3: [tex]\(\tan(x)\)[/tex] and [tex]\(\cot(x)\)[/tex] are odd functions.
A function [tex]\( f(x) \)[/tex] is odd if [tex]\( f(-x) = -f(x) \)[/tex]. For [tex]\(\tan(x)\)[/tex],
[tex]\[ \tan(-x) = -\tan(x) \][/tex]
and for [tex]\(\cot(x)\)[/tex],
[tex]\[ \cot(-x) = -\cot(x) \][/tex]
These properties confirm that both [tex]\(\tan(x)\)[/tex] and [tex]\(\cot(x)\)[/tex] are odd functions. Thus, the statement is True.
- Answer: [tex]\( T \)[/tex]
### Statement 4: [tex]\(\sec(x)\)[/tex] and [tex]\(\tan(x)\)[/tex] are undefined for the same values of [tex]\(x\)[/tex].
The secant function [tex]\(\sec(x) = \frac{1}{\cos(x)}\)[/tex] is undefined where [tex]\(\cos(x) = 0\)[/tex]. Similarly, as previously discussed, [tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex] is also undefined where [tex]\(\cos(x) = 0\)[/tex]. These points are [tex]\(x = \frac{(2n+1)\pi}{2}\)[/tex] for any integer [tex]\(n\)[/tex]. Therefore, [tex]\(\sec(x)\)[/tex] and [tex]\(\tan(x)\)[/tex] are indeed undefined for the same values of [tex]\(x\)[/tex]. Thus, the statement is True.
- Answer: [tex]\( T \)[/tex]
Therefore, the final answers to the statements are:
1. [tex]\( F \)[/tex]
2. [tex]\( F \)[/tex]
3. [tex]\( T \)[/tex]
4. [tex]\( T \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.