Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the weight of the water displaced by a block of iron with given dimensions, follow these steps:
1. Calculate the Volume of the Iron Block:
The volume ([tex]\( V \)[/tex]) of a rectangular block is found by multiplying its length ([tex]\( l \)[/tex]), width ([tex]\( w \)[/tex]), and height ([tex]\( h \)[/tex]) together.
[tex]\[ V = l \times w \times h \][/tex]
Given:
[tex]\[ l = 3.00 \, \text{cm}, \quad w = 3.00 \, \text{cm}, \quad h = 3.00 \, \text{cm} \][/tex]
[tex]\[ V = 3.00 \times 3.00 \times 3.00 = 27.00 \, \text{cm}^3 \][/tex]
2. Determine the Mass of the Displaced Water:
Since the iron block will displace an equal volume of water, we need to calculate the mass of this water. The mass ([tex]\( m \)[/tex]) is found by multiplying the volume by the density ([tex]\( \rho \)[/tex]) of water.
Given the density of water:
[tex]\[ \rho = 1.00 \, \text{g/cm}^3 \][/tex]
[tex]\[ m = V \times \rho = 27.00 \, \text{cm}^3 \times 1.00 \, \text{g/cm}^3 = 27.00 \, \text{g} \][/tex]
3. Convert the Mass to Kilograms:
The mass must be converted to kilograms to use the formula for weight. There are 1000 grams in a kilogram.
[tex]\[ m_{\text{kg}} = \frac{m}{1000} = \frac{27.00 \, \text{g}}{1000} = 0.027 \, \text{kg} \][/tex]
4. Calculate the Weight of the Displaced Water:
The weight ([tex]\( W \)[/tex]) of the water displaced can be calculated using the formula [tex]\( W = m \times g \)[/tex], where [tex]\( g \)[/tex] is the acceleration due to gravity.
Given [tex]\( g = 9.80 \, \text{m/s}^2 \)[/tex]:
[tex]\[ W = m_{\text{kg}} \times g = 0.027 \, \text{kg} \times 9.80 \, \text{m/s}^2 = 0.2646 \, \text{N} \][/tex]
Hence, the weight of the water displaced by the block of iron is [tex]\( 0.2646 \, \text{N} \)[/tex], which approximates to [tex]\( 0.265 \, \text{N} \)[/tex].
1. Calculate the Volume of the Iron Block:
The volume ([tex]\( V \)[/tex]) of a rectangular block is found by multiplying its length ([tex]\( l \)[/tex]), width ([tex]\( w \)[/tex]), and height ([tex]\( h \)[/tex]) together.
[tex]\[ V = l \times w \times h \][/tex]
Given:
[tex]\[ l = 3.00 \, \text{cm}, \quad w = 3.00 \, \text{cm}, \quad h = 3.00 \, \text{cm} \][/tex]
[tex]\[ V = 3.00 \times 3.00 \times 3.00 = 27.00 \, \text{cm}^3 \][/tex]
2. Determine the Mass of the Displaced Water:
Since the iron block will displace an equal volume of water, we need to calculate the mass of this water. The mass ([tex]\( m \)[/tex]) is found by multiplying the volume by the density ([tex]\( \rho \)[/tex]) of water.
Given the density of water:
[tex]\[ \rho = 1.00 \, \text{g/cm}^3 \][/tex]
[tex]\[ m = V \times \rho = 27.00 \, \text{cm}^3 \times 1.00 \, \text{g/cm}^3 = 27.00 \, \text{g} \][/tex]
3. Convert the Mass to Kilograms:
The mass must be converted to kilograms to use the formula for weight. There are 1000 grams in a kilogram.
[tex]\[ m_{\text{kg}} = \frac{m}{1000} = \frac{27.00 \, \text{g}}{1000} = 0.027 \, \text{kg} \][/tex]
4. Calculate the Weight of the Displaced Water:
The weight ([tex]\( W \)[/tex]) of the water displaced can be calculated using the formula [tex]\( W = m \times g \)[/tex], where [tex]\( g \)[/tex] is the acceleration due to gravity.
Given [tex]\( g = 9.80 \, \text{m/s}^2 \)[/tex]:
[tex]\[ W = m_{\text{kg}} \times g = 0.027 \, \text{kg} \times 9.80 \, \text{m/s}^2 = 0.2646 \, \text{N} \][/tex]
Hence, the weight of the water displaced by the block of iron is [tex]\( 0.2646 \, \text{N} \)[/tex], which approximates to [tex]\( 0.265 \, \text{N} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.