Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To write the expression [tex]\( z^{\frac{4}{7}} \)[/tex] as a radical expression, we need to understand how to interpret the exponent [tex]\(\frac{4}{7}\)[/tex].
1. Understand the Exponent: The exponent [tex]\(\frac{4}{7}\)[/tex] can be broken down into two parts:
- The numerator [tex]\(4\)[/tex] represents a power.
- The denominator [tex]\(7\)[/tex] represents a root.
2. Express as a Power and Root: An exponent of the form [tex]\(\frac{4}{7}\)[/tex] suggests that we take the 7th root (denominator) and raise the result to the 4th power (numerator). Mathematically, this can be written as:
[tex]\[ z^{\frac{4}{7}} = \left(z^4\right)^{\frac{1}{7}} \][/tex]
3. Convert to a Radical Form: The expression [tex]\(\left(z^4\right)^{\frac{1}{7}}\)[/tex] can be rewritten using radical notation. The [tex]\(\frac{1}{7}\)[/tex] exponent indicates the 7th root:
[tex]\[ \left(z^4\right)^{\frac{1}{7}} = \sqrt[7]{z^4} \][/tex]
Thus, the expression [tex]\( z^{\frac{4}{7}} \)[/tex] as a radical expression is:
[tex]\[ \sqrt[7]{z^4} \][/tex]
This result shows that [tex]\( z^{\frac{4}{7}} \)[/tex] can be interpreted as the 7th root of [tex]\( z \)[/tex] raised to the 4th power.
1. Understand the Exponent: The exponent [tex]\(\frac{4}{7}\)[/tex] can be broken down into two parts:
- The numerator [tex]\(4\)[/tex] represents a power.
- The denominator [tex]\(7\)[/tex] represents a root.
2. Express as a Power and Root: An exponent of the form [tex]\(\frac{4}{7}\)[/tex] suggests that we take the 7th root (denominator) and raise the result to the 4th power (numerator). Mathematically, this can be written as:
[tex]\[ z^{\frac{4}{7}} = \left(z^4\right)^{\frac{1}{7}} \][/tex]
3. Convert to a Radical Form: The expression [tex]\(\left(z^4\right)^{\frac{1}{7}}\)[/tex] can be rewritten using radical notation. The [tex]\(\frac{1}{7}\)[/tex] exponent indicates the 7th root:
[tex]\[ \left(z^4\right)^{\frac{1}{7}} = \sqrt[7]{z^4} \][/tex]
Thus, the expression [tex]\( z^{\frac{4}{7}} \)[/tex] as a radical expression is:
[tex]\[ \sqrt[7]{z^4} \][/tex]
This result shows that [tex]\( z^{\frac{4}{7}} \)[/tex] can be interpreted as the 7th root of [tex]\( z \)[/tex] raised to the 4th power.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.