Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The given line equation is [tex]\( y = -\frac{1}{3}x - \frac{1}{3} \)[/tex].
1. Determine the slope of the given line:
- The equation is in slope-intercept form ([tex]\( y = mx + b \)[/tex]), where [tex]\( m \)[/tex] is the slope.
- Here, the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{1}{3} \)[/tex].
2. Find the slope of the perpendicular line:
- The slope of a line perpendicular to another line is the negative reciprocal of the given line's slope.
- The negative reciprocal of [tex]\( -\frac{1}{3} \)[/tex] is [tex]\( 3 \)[/tex].
3. Use the point-slope form to find the equation of the perpendicular line passing through the point [tex]\( (2, -1) \)[/tex]:
- Point-slope form of a line is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- Here, [tex]\( m = 3 \)[/tex], [tex]\( x_1 = 2 \)[/tex], and [tex]\( y_1 = -1 \)[/tex].
4. Substitute the values into the point-slope form:
[tex]\( y - (-1) = 3(x - 2) \)[/tex]
[tex]\( y + 1 = 3(x - 2) \)[/tex]
5. Solve for [tex]\( y \)[/tex] to get the equation in slope-intercept form ([tex]\( y = mx + b \)[/tex]):
[tex]\( y + 1 = 3x - 6 \)[/tex]
[tex]\( y = 3x - 6 - 1 \)[/tex]
[tex]\( y = 3x - 7 \)[/tex]
Therefore, the equation of the line that is perpendicular to the given line and passes through the point [tex]\( (2, -1) \)[/tex] is [tex]\( y = 3x - 7 \)[/tex].
The correct answer is the fourth option:
[tex]\[ y = 3x - 7 \][/tex]
1. Determine the slope of the given line:
- The equation is in slope-intercept form ([tex]\( y = mx + b \)[/tex]), where [tex]\( m \)[/tex] is the slope.
- Here, the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{1}{3} \)[/tex].
2. Find the slope of the perpendicular line:
- The slope of a line perpendicular to another line is the negative reciprocal of the given line's slope.
- The negative reciprocal of [tex]\( -\frac{1}{3} \)[/tex] is [tex]\( 3 \)[/tex].
3. Use the point-slope form to find the equation of the perpendicular line passing through the point [tex]\( (2, -1) \)[/tex]:
- Point-slope form of a line is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- Here, [tex]\( m = 3 \)[/tex], [tex]\( x_1 = 2 \)[/tex], and [tex]\( y_1 = -1 \)[/tex].
4. Substitute the values into the point-slope form:
[tex]\( y - (-1) = 3(x - 2) \)[/tex]
[tex]\( y + 1 = 3(x - 2) \)[/tex]
5. Solve for [tex]\( y \)[/tex] to get the equation in slope-intercept form ([tex]\( y = mx + b \)[/tex]):
[tex]\( y + 1 = 3x - 6 \)[/tex]
[tex]\( y = 3x - 6 - 1 \)[/tex]
[tex]\( y = 3x - 7 \)[/tex]
Therefore, the equation of the line that is perpendicular to the given line and passes through the point [tex]\( (2, -1) \)[/tex] is [tex]\( y = 3x - 7 \)[/tex].
The correct answer is the fourth option:
[tex]\[ y = 3x - 7 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.