At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Given the triangles [tex]\(\triangle RST\)[/tex] and [tex]\(\triangle RYX\)[/tex] that are similar by the SSS (Side-Side-Side) similarity theorem, we need to find the ratio that is also equal to [tex]\(\frac{RT}{RX}\)[/tex] and [tex]\(\frac{RS}{RY}\)[/tex].
Step-by-step solution:
1. Identify corresponding sides in the similar triangles:
- Since [tex]\(\triangle RST \sim \triangle RYX\)[/tex], the sides of these triangles are proportional. Corresponding sides must be identified correctly.
- In these similar triangles:
- [tex]\(RT\)[/tex] corresponds to [tex]\(RX\)[/tex],
- [tex]\(RS\)[/tex] corresponds to [tex]\(RY\)[/tex],
- [tex]\(ST\)[/tex] corresponds to [tex]\(YX\)[/tex].
2. Form the ratios using corresponding sides:
- The ratio of sides [tex]\(RT/\)[/tex] and [tex]\(RX\)[/tex] pertains to corresponding sides in both triangles.
- Similarly, the ratio of sides [tex]\(RS/\)[/tex] and [tex]\(RY\)[/tex] also pertains to corresponding sides in both triangles.
3. Check each given option for correspondence and confirm proportional relationships:
- Check if [tex]\(\frac{XY}{TS}\)[/tex] is a valid ratio:
- [tex]\(XY\)[/tex] and [tex]\(TS\)[/tex] are not corresponding sides in [tex]\(\triangle RST\)[/tex] and [tex]\(\triangle RYX\)[/tex], so this ratio is not valid.
- Check if [tex]\(\frac{SY}{RY}\)[/tex] is a valid ratio:
- [tex]\(SY\)[/tex] is not a corresponding side in either triangle, making this option invalid.
- Check if [tex]\(\frac{RX}{XT}\)[/tex] is a valid ratio:
- This ratio is not a valid analogy for corresponding sides in the similar triangles.
- Check if [tex]\(\frac{ST}{YX}\)[/tex] is a valid ratio:
- Here, [tex]\(ST\)[/tex] and [tex]\(YX\)[/tex] are corresponding sides of the similar triangles.
- Because [tex]\(ST\)[/tex] corresponds to [tex]\(YX\)[/tex], the ratio [tex]\(\frac{ST}{YX}\)[/tex] is a valid ratio that must be equal to [tex]\(\frac{RT}{RX}\)[/tex] and [tex]\(\frac{RS}{RY}\)[/tex].
4. Conclusion:
- The correct ratio that corresponds to [tex]\(\frac{RT}{RX}\)[/tex] and [tex]\(\frac{RS}{RY}\)[/tex] is [tex]\(\frac{ST}{YX}\)[/tex].
Thus, the answer is [tex]\(\frac{ST}{YX}\)[/tex], which is option 4.
Step-by-step solution:
1. Identify corresponding sides in the similar triangles:
- Since [tex]\(\triangle RST \sim \triangle RYX\)[/tex], the sides of these triangles are proportional. Corresponding sides must be identified correctly.
- In these similar triangles:
- [tex]\(RT\)[/tex] corresponds to [tex]\(RX\)[/tex],
- [tex]\(RS\)[/tex] corresponds to [tex]\(RY\)[/tex],
- [tex]\(ST\)[/tex] corresponds to [tex]\(YX\)[/tex].
2. Form the ratios using corresponding sides:
- The ratio of sides [tex]\(RT/\)[/tex] and [tex]\(RX\)[/tex] pertains to corresponding sides in both triangles.
- Similarly, the ratio of sides [tex]\(RS/\)[/tex] and [tex]\(RY\)[/tex] also pertains to corresponding sides in both triangles.
3. Check each given option for correspondence and confirm proportional relationships:
- Check if [tex]\(\frac{XY}{TS}\)[/tex] is a valid ratio:
- [tex]\(XY\)[/tex] and [tex]\(TS\)[/tex] are not corresponding sides in [tex]\(\triangle RST\)[/tex] and [tex]\(\triangle RYX\)[/tex], so this ratio is not valid.
- Check if [tex]\(\frac{SY}{RY}\)[/tex] is a valid ratio:
- [tex]\(SY\)[/tex] is not a corresponding side in either triangle, making this option invalid.
- Check if [tex]\(\frac{RX}{XT}\)[/tex] is a valid ratio:
- This ratio is not a valid analogy for corresponding sides in the similar triangles.
- Check if [tex]\(\frac{ST}{YX}\)[/tex] is a valid ratio:
- Here, [tex]\(ST\)[/tex] and [tex]\(YX\)[/tex] are corresponding sides of the similar triangles.
- Because [tex]\(ST\)[/tex] corresponds to [tex]\(YX\)[/tex], the ratio [tex]\(\frac{ST}{YX}\)[/tex] is a valid ratio that must be equal to [tex]\(\frac{RT}{RX}\)[/tex] and [tex]\(\frac{RS}{RY}\)[/tex].
4. Conclusion:
- The correct ratio that corresponds to [tex]\(\frac{RT}{RX}\)[/tex] and [tex]\(\frac{RS}{RY}\)[/tex] is [tex]\(\frac{ST}{YX}\)[/tex].
Thus, the answer is [tex]\(\frac{ST}{YX}\)[/tex], which is option 4.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.