At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To calculate the variance of the weekly salaries of the employees at the local bank, we need to follow a series of mathematical steps. Here are the salaries given:
- Anja: \[tex]$245 - Raz: \$[/tex]300
- Natalie: \[tex]$325 - Mic: \$[/tex]465
- Paul: \$100
First, we calculate the mean (average) of the salaries.
[tex]\[ \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \][/tex]
where [tex]\( x_i \)[/tex] are the individual data points (salaries), and [tex]\( n \)[/tex] is the number of data points.
[tex]\[ \bar{x} = \frac{245 + 300 + 325 + 465 + 100}{5} = \frac{1435}{5} = 287 \][/tex]
Next, we calculate the variance using the formula:
[tex]\[ s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \][/tex]
[tex]\[ s^2 = \frac{(245 - 287)^2 + (300 - 287)^2 + (325 - 287)^2 + (465 - 287)^2 + (100 - 287)^2}{5 - 1} \][/tex]
Calculate each squared deviation:
[tex]\[ (245 - 287)^2 = (-42)^2 = 1764 \][/tex]
[tex]\[ (300 - 287)^2 = (13)^2 = 169 \][/tex]
[tex]\[ (325 - 287)^2 = (38)^2 = 1444 \][/tex]
[tex]\[ (465 - 287)^2 = (178)^2 = 31684 \][/tex]
[tex]\[ (100 - 287)^2 = (-187)^2 = 34969 \][/tex]
Now sum these squared deviations:
[tex]\[ 1764 + 169 + 1444 + 31684 + 34969 = 70030 \][/tex]
Finally, divide by the number of data points minus one (degrees of freedom):
[tex]\[ s^2 = \frac{70030}{4} = 17507.5 \][/tex]
Hence, the variance for the given data set is:
[tex]\[ s^2 = 17507.5 \][/tex]
- Anja: \[tex]$245 - Raz: \$[/tex]300
- Natalie: \[tex]$325 - Mic: \$[/tex]465
- Paul: \$100
First, we calculate the mean (average) of the salaries.
[tex]\[ \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \][/tex]
where [tex]\( x_i \)[/tex] are the individual data points (salaries), and [tex]\( n \)[/tex] is the number of data points.
[tex]\[ \bar{x} = \frac{245 + 300 + 325 + 465 + 100}{5} = \frac{1435}{5} = 287 \][/tex]
Next, we calculate the variance using the formula:
[tex]\[ s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \][/tex]
[tex]\[ s^2 = \frac{(245 - 287)^2 + (300 - 287)^2 + (325 - 287)^2 + (465 - 287)^2 + (100 - 287)^2}{5 - 1} \][/tex]
Calculate each squared deviation:
[tex]\[ (245 - 287)^2 = (-42)^2 = 1764 \][/tex]
[tex]\[ (300 - 287)^2 = (13)^2 = 169 \][/tex]
[tex]\[ (325 - 287)^2 = (38)^2 = 1444 \][/tex]
[tex]\[ (465 - 287)^2 = (178)^2 = 31684 \][/tex]
[tex]\[ (100 - 287)^2 = (-187)^2 = 34969 \][/tex]
Now sum these squared deviations:
[tex]\[ 1764 + 169 + 1444 + 31684 + 34969 = 70030 \][/tex]
Finally, divide by the number of data points minus one (degrees of freedom):
[tex]\[ s^2 = \frac{70030}{4} = 17507.5 \][/tex]
Hence, the variance for the given data set is:
[tex]\[ s^2 = 17507.5 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.