Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To calculate the variance of the weekly salaries of the employees at the local bank, we need to follow a series of mathematical steps. Here are the salaries given:
- Anja: \[tex]$245 - Raz: \$[/tex]300
- Natalie: \[tex]$325 - Mic: \$[/tex]465
- Paul: \$100
First, we calculate the mean (average) of the salaries.
[tex]\[ \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \][/tex]
where [tex]\( x_i \)[/tex] are the individual data points (salaries), and [tex]\( n \)[/tex] is the number of data points.
[tex]\[ \bar{x} = \frac{245 + 300 + 325 + 465 + 100}{5} = \frac{1435}{5} = 287 \][/tex]
Next, we calculate the variance using the formula:
[tex]\[ s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \][/tex]
[tex]\[ s^2 = \frac{(245 - 287)^2 + (300 - 287)^2 + (325 - 287)^2 + (465 - 287)^2 + (100 - 287)^2}{5 - 1} \][/tex]
Calculate each squared deviation:
[tex]\[ (245 - 287)^2 = (-42)^2 = 1764 \][/tex]
[tex]\[ (300 - 287)^2 = (13)^2 = 169 \][/tex]
[tex]\[ (325 - 287)^2 = (38)^2 = 1444 \][/tex]
[tex]\[ (465 - 287)^2 = (178)^2 = 31684 \][/tex]
[tex]\[ (100 - 287)^2 = (-187)^2 = 34969 \][/tex]
Now sum these squared deviations:
[tex]\[ 1764 + 169 + 1444 + 31684 + 34969 = 70030 \][/tex]
Finally, divide by the number of data points minus one (degrees of freedom):
[tex]\[ s^2 = \frac{70030}{4} = 17507.5 \][/tex]
Hence, the variance for the given data set is:
[tex]\[ s^2 = 17507.5 \][/tex]
- Anja: \[tex]$245 - Raz: \$[/tex]300
- Natalie: \[tex]$325 - Mic: \$[/tex]465
- Paul: \$100
First, we calculate the mean (average) of the salaries.
[tex]\[ \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \][/tex]
where [tex]\( x_i \)[/tex] are the individual data points (salaries), and [tex]\( n \)[/tex] is the number of data points.
[tex]\[ \bar{x} = \frac{245 + 300 + 325 + 465 + 100}{5} = \frac{1435}{5} = 287 \][/tex]
Next, we calculate the variance using the formula:
[tex]\[ s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \][/tex]
[tex]\[ s^2 = \frac{(245 - 287)^2 + (300 - 287)^2 + (325 - 287)^2 + (465 - 287)^2 + (100 - 287)^2}{5 - 1} \][/tex]
Calculate each squared deviation:
[tex]\[ (245 - 287)^2 = (-42)^2 = 1764 \][/tex]
[tex]\[ (300 - 287)^2 = (13)^2 = 169 \][/tex]
[tex]\[ (325 - 287)^2 = (38)^2 = 1444 \][/tex]
[tex]\[ (465 - 287)^2 = (178)^2 = 31684 \][/tex]
[tex]\[ (100 - 287)^2 = (-187)^2 = 34969 \][/tex]
Now sum these squared deviations:
[tex]\[ 1764 + 169 + 1444 + 31684 + 34969 = 70030 \][/tex]
Finally, divide by the number of data points minus one (degrees of freedom):
[tex]\[ s^2 = \frac{70030}{4} = 17507.5 \][/tex]
Hence, the variance for the given data set is:
[tex]\[ s^2 = 17507.5 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.