Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The weekly salaries of a sample of employees at the local bank are given in the table below.

[tex]\[
\begin{tabular}{|c|c|}
\hline
Employee & Weekly Salary \\
\hline
Anja & \$245 \\
\hline
Raz & \$300 \\
\hline
Natalie & \$325 \\
\hline
Mic & \$465 \\
\hline
Paul & \$100 \\
\hline
\end{tabular}
\][/tex]

What is the variance for the data?

[tex]\[
\text{Variance: } s^2 = \frac{(x_1-\bar{x})^2 + (x_2-\bar{x})^2 + \ldots + (x_n-\bar{x})^2}{n-1}
\][/tex]

A. 118.35
B. 132.32


Sagot :

To calculate the variance of the weekly salaries of the employees at the local bank, we need to follow a series of mathematical steps. Here are the salaries given:

- Anja: \[tex]$245 - Raz: \$[/tex]300
- Natalie: \[tex]$325 - Mic: \$[/tex]465
- Paul: \$100

First, we calculate the mean (average) of the salaries.

[tex]\[ \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \][/tex]

where [tex]\( x_i \)[/tex] are the individual data points (salaries), and [tex]\( n \)[/tex] is the number of data points.

[tex]\[ \bar{x} = \frac{245 + 300 + 325 + 465 + 100}{5} = \frac{1435}{5} = 287 \][/tex]

Next, we calculate the variance using the formula:

[tex]\[ s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \][/tex]

[tex]\[ s^2 = \frac{(245 - 287)^2 + (300 - 287)^2 + (325 - 287)^2 + (465 - 287)^2 + (100 - 287)^2}{5 - 1} \][/tex]

Calculate each squared deviation:

[tex]\[ (245 - 287)^2 = (-42)^2 = 1764 \][/tex]
[tex]\[ (300 - 287)^2 = (13)^2 = 169 \][/tex]
[tex]\[ (325 - 287)^2 = (38)^2 = 1444 \][/tex]
[tex]\[ (465 - 287)^2 = (178)^2 = 31684 \][/tex]
[tex]\[ (100 - 287)^2 = (-187)^2 = 34969 \][/tex]

Now sum these squared deviations:

[tex]\[ 1764 + 169 + 1444 + 31684 + 34969 = 70030 \][/tex]

Finally, divide by the number of data points minus one (degrees of freedom):

[tex]\[ s^2 = \frac{70030}{4} = 17507.5 \][/tex]

Hence, the variance for the given data set is:

[tex]\[ s^2 = 17507.5 \][/tex]