Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which object is on the tallest hill, we need to use the formula for gravitational potential energy:
[tex]\[ U = m \cdot g \cdot h \][/tex]
where:
- [tex]\( U \)[/tex] is the potential energy (in joules),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height above the reference point (in meters).
We can rearrange this formula to solve for height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{U}{m \cdot g} \][/tex]
We need to calculate [tex]\( h \)[/tex] for each object.
1. Object W:
[tex]\[ m_W = 50 \, \text{kg} \][/tex]
[tex]\[ U_W = 980 \, \text{J} \][/tex]
[tex]\[ h_W = \frac{980}{50 \cdot 9.8} \approx 2 \, \text{m} \][/tex]
2. Object X:
[tex]\[ m_X = 35 \, \text{kg} \][/tex]
[tex]\[ U_X = 1029 \, \text{J} \][/tex]
[tex]\[ h_X = \frac{1029}{35 \cdot 9.8} \approx 3 \, \text{m} \][/tex]
3. Object Y:
[tex]\[ m_Y = 62 \, \text{kg} \][/tex]
[tex]\[ U_Y = 1519 \, \text{J} \][/tex]
[tex]\[ h_Y = \frac{1519}{62 \cdot 9.8} \approx 2.5 \, \text{m} \][/tex]
4. Object Z:
[tex]\[ m_Z = 24 \, \text{kg} \][/tex]
[tex]\[ U_Z = 1176 \, \text{J} \][/tex]
[tex]\[ h_Z = \frac{1176}{24 \cdot 9.8} \approx 5 \, \text{m} \][/tex]
Examining the calculated heights, we find:
- [tex]\( h_W \approx 2 \, \text{m} \)[/tex]
- [tex]\( h_X \approx 3 \, \text{m} \)[/tex]
- [tex]\( h_Y \approx 2.5 \, \text{m} \)[/tex]
- [tex]\( h_Z \approx 5 \, \text{m} \)[/tex]
Therefore, the object on the tallest hill is Z with a height of approximately 5 meters.
[tex]\[ U = m \cdot g \cdot h \][/tex]
where:
- [tex]\( U \)[/tex] is the potential energy (in joules),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height above the reference point (in meters).
We can rearrange this formula to solve for height [tex]\( h \)[/tex]:
[tex]\[ h = \frac{U}{m \cdot g} \][/tex]
We need to calculate [tex]\( h \)[/tex] for each object.
1. Object W:
[tex]\[ m_W = 50 \, \text{kg} \][/tex]
[tex]\[ U_W = 980 \, \text{J} \][/tex]
[tex]\[ h_W = \frac{980}{50 \cdot 9.8} \approx 2 \, \text{m} \][/tex]
2. Object X:
[tex]\[ m_X = 35 \, \text{kg} \][/tex]
[tex]\[ U_X = 1029 \, \text{J} \][/tex]
[tex]\[ h_X = \frac{1029}{35 \cdot 9.8} \approx 3 \, \text{m} \][/tex]
3. Object Y:
[tex]\[ m_Y = 62 \, \text{kg} \][/tex]
[tex]\[ U_Y = 1519 \, \text{J} \][/tex]
[tex]\[ h_Y = \frac{1519}{62 \cdot 9.8} \approx 2.5 \, \text{m} \][/tex]
4. Object Z:
[tex]\[ m_Z = 24 \, \text{kg} \][/tex]
[tex]\[ U_Z = 1176 \, \text{J} \][/tex]
[tex]\[ h_Z = \frac{1176}{24 \cdot 9.8} \approx 5 \, \text{m} \][/tex]
Examining the calculated heights, we find:
- [tex]\( h_W \approx 2 \, \text{m} \)[/tex]
- [tex]\( h_X \approx 3 \, \text{m} \)[/tex]
- [tex]\( h_Y \approx 2.5 \, \text{m} \)[/tex]
- [tex]\( h_Z \approx 5 \, \text{m} \)[/tex]
Therefore, the object on the tallest hill is Z with a height of approximately 5 meters.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.