Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which lines are perpendicular to the line [tex]\( y - 1 = \frac{1}{3}(x + 2) \)[/tex], we need to first understand the concept of the slope and the property of perpendicular lines.
### Step 1: Determine the slope of the given line
The equation of the line is given in point-slope form:
[tex]\[ y - 1 = \frac{1}{3}(x + 2) \][/tex]
The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. From the equation [tex]\( y - 1 = \frac{1}{3}(x + 2) \)[/tex], we can see that the slope [tex]\( m \)[/tex] is [tex]\( \frac{1}{3} \)[/tex].
### Step 2: Find the perpendicular slope
Lines that are perpendicular have slopes that are negative reciprocals of each other. The negative reciprocal of [tex]\( \frac{1}{3} \)[/tex] is [tex]\( -3 \)[/tex].
### Step 3: Identifying the slopes of the given lines
Now let's find the slopes of the given lines and check which of them has a slope of [tex]\( -3 \)[/tex]:
1. Line 1: [tex]\( y + 2 = -3(x - 4) \)[/tex]
- Rewrite in slope-intercept form: [tex]\( y + 2 = -3x + 12 \)[/tex]
- Subtract 2 from both sides to solve for [tex]\( y \)[/tex]: [tex]\( y = -3x + 10 \)[/tex]
- Slope: [tex]\( -3 \)[/tex]
2. Line 2: [tex]\( y - 5 = 3(x + 11) \)[/tex]
- Rewrite in slope-intercept form: [tex]\( y - 5 = 3x + 33 \)[/tex]
- Add 5 to both sides to solve for [tex]\( y \)[/tex]: [tex]\( y = 3x + 38 \)[/tex]
- Slope: [tex]\( 3 \)[/tex]
3. Line 3: [tex]\( y = -3x - \frac{5}{3} \)[/tex]
- This line is already in slope-intercept form.
- Slope: [tex]\( -3 \)[/tex]
4. Line 4: [tex]\( y = \frac{1}{3}x - 2 \)[/tex]
- This line is already in slope-intercept form.
- Slope: [tex]\( \frac{1}{3} \)[/tex]
5. Line 5: [tex]\( 3x + y = 7 \)[/tex]
- Rewrite in slope-intercept form: [tex]\( y = -3x + 7 \)[/tex]
- Slope: [tex]\( -3 \)[/tex]
### Step 4: Compare slopes
We are looking for lines with a slope of [tex]\( -3 \)[/tex], which is the negative reciprocal of [tex]\( \frac{1}{3} \)[/tex].
- Line 1: Slope = [tex]\( -3 \)[/tex] (Perpendicular)
- Line 2: Slope = [tex]\( 3 \)[/tex] (Not Perpendicular)
- Line 3: Slope = [tex]\( -3 \)[/tex] (Perpendicular)
- Line 4: Slope = [tex]\( \frac{1}{3} \)[/tex] (Not Perpendicular)
- Line 5: Slope = [tex]\( -3 \)[/tex] (Perpendicular)
### Conclusion
The lines that are perpendicular to [tex]\( y - 1 = \frac{1}{3}(x + 2) \)[/tex] are:
[tex]\[ y + 2 = -3(x - 4) \][/tex]
[tex]\[ y = -3x - \frac{5}{3} \][/tex]
[tex]\[ 3x + y = 7 \][/tex]
These correspond to Line 1, Line 3, and Line 5 respectively. Hence, the lines that are perpendicular to the given line are:
[tex]\[ [1, 3, 5] \][/tex]
### Step 1: Determine the slope of the given line
The equation of the line is given in point-slope form:
[tex]\[ y - 1 = \frac{1}{3}(x + 2) \][/tex]
The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. From the equation [tex]\( y - 1 = \frac{1}{3}(x + 2) \)[/tex], we can see that the slope [tex]\( m \)[/tex] is [tex]\( \frac{1}{3} \)[/tex].
### Step 2: Find the perpendicular slope
Lines that are perpendicular have slopes that are negative reciprocals of each other. The negative reciprocal of [tex]\( \frac{1}{3} \)[/tex] is [tex]\( -3 \)[/tex].
### Step 3: Identifying the slopes of the given lines
Now let's find the slopes of the given lines and check which of them has a slope of [tex]\( -3 \)[/tex]:
1. Line 1: [tex]\( y + 2 = -3(x - 4) \)[/tex]
- Rewrite in slope-intercept form: [tex]\( y + 2 = -3x + 12 \)[/tex]
- Subtract 2 from both sides to solve for [tex]\( y \)[/tex]: [tex]\( y = -3x + 10 \)[/tex]
- Slope: [tex]\( -3 \)[/tex]
2. Line 2: [tex]\( y - 5 = 3(x + 11) \)[/tex]
- Rewrite in slope-intercept form: [tex]\( y - 5 = 3x + 33 \)[/tex]
- Add 5 to both sides to solve for [tex]\( y \)[/tex]: [tex]\( y = 3x + 38 \)[/tex]
- Slope: [tex]\( 3 \)[/tex]
3. Line 3: [tex]\( y = -3x - \frac{5}{3} \)[/tex]
- This line is already in slope-intercept form.
- Slope: [tex]\( -3 \)[/tex]
4. Line 4: [tex]\( y = \frac{1}{3}x - 2 \)[/tex]
- This line is already in slope-intercept form.
- Slope: [tex]\( \frac{1}{3} \)[/tex]
5. Line 5: [tex]\( 3x + y = 7 \)[/tex]
- Rewrite in slope-intercept form: [tex]\( y = -3x + 7 \)[/tex]
- Slope: [tex]\( -3 \)[/tex]
### Step 4: Compare slopes
We are looking for lines with a slope of [tex]\( -3 \)[/tex], which is the negative reciprocal of [tex]\( \frac{1}{3} \)[/tex].
- Line 1: Slope = [tex]\( -3 \)[/tex] (Perpendicular)
- Line 2: Slope = [tex]\( 3 \)[/tex] (Not Perpendicular)
- Line 3: Slope = [tex]\( -3 \)[/tex] (Perpendicular)
- Line 4: Slope = [tex]\( \frac{1}{3} \)[/tex] (Not Perpendicular)
- Line 5: Slope = [tex]\( -3 \)[/tex] (Perpendicular)
### Conclusion
The lines that are perpendicular to [tex]\( y - 1 = \frac{1}{3}(x + 2) \)[/tex] are:
[tex]\[ y + 2 = -3(x - 4) \][/tex]
[tex]\[ y = -3x - \frac{5}{3} \][/tex]
[tex]\[ 3x + y = 7 \][/tex]
These correspond to Line 1, Line 3, and Line 5 respectively. Hence, the lines that are perpendicular to the given line are:
[tex]\[ [1, 3, 5] \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.