Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine a line that is parallel to the given line [tex]\(8x + 2y = 12\)[/tex], we need to follow these steps:
1. Find the slope of the given line:
- Start by rewriting the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
- Begin with the original equation [tex]\(8x + 2y = 12\)[/tex].
- Solve for [tex]\(y\)[/tex]:
[tex]\[ 2y = -8x + 12 \][/tex]
[tex]\[ y = -4x + 6 \][/tex]
- From this form, it's clear that the slope [tex]\(m\)[/tex] of the given line is [tex]\(-4\)[/tex].
2. Determine the form of a parallel line:
- Lines that are parallel have the same slope. So, any line parallel to the given line will also have a slope of [tex]\(-4\)[/tex].
- The general form of a line with slope [tex]\(-4\)[/tex] can be written as [tex]\(y = -4x + c\)[/tex], where [tex]\(c\)[/tex] is any constant.
3. Specify a parallel line:
- For simplicity, let's choose [tex]\(c = 0\)[/tex] which is a convenient choice.
- Thus, a parallel line can be written as [tex]\(y = -4x\)[/tex].
Therefore, a line that is parallel to the line [tex]\(8x + 2y = 12\)[/tex] is [tex]\(y = -4x\)[/tex].
1. Find the slope of the given line:
- Start by rewriting the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
- Begin with the original equation [tex]\(8x + 2y = 12\)[/tex].
- Solve for [tex]\(y\)[/tex]:
[tex]\[ 2y = -8x + 12 \][/tex]
[tex]\[ y = -4x + 6 \][/tex]
- From this form, it's clear that the slope [tex]\(m\)[/tex] of the given line is [tex]\(-4\)[/tex].
2. Determine the form of a parallel line:
- Lines that are parallel have the same slope. So, any line parallel to the given line will also have a slope of [tex]\(-4\)[/tex].
- The general form of a line with slope [tex]\(-4\)[/tex] can be written as [tex]\(y = -4x + c\)[/tex], where [tex]\(c\)[/tex] is any constant.
3. Specify a parallel line:
- For simplicity, let's choose [tex]\(c = 0\)[/tex] which is a convenient choice.
- Thus, a parallel line can be written as [tex]\(y = -4x\)[/tex].
Therefore, a line that is parallel to the line [tex]\(8x + 2y = 12\)[/tex] is [tex]\(y = -4x\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.