Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Find the absolute extrema of the function on the interval [tex]\([2, 3]\)[/tex]. (Round your answers to the nearest hundredth.)

[tex]\[ g(x)=\frac{x}{\ln (x)} \][/tex]

Absolute minimum:


Sagot :

To find the absolute extrema of the function [tex]\( g(x) = \frac{x}{\ln(x)} \)[/tex] on the interval [tex]\([2, 3]\)[/tex], follow these steps:

1. Identify the Given Function and Interval:
The function is [tex]\( g(x) = \frac{x}{\ln(x)} \)[/tex], and we are tasked with finding the absolute minimum on the interval [tex]\([2, 3]\)[/tex].

2. Evaluate the Function at the Endpoints:
- At [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = \frac{2}{\ln(2)} \][/tex]
- At [tex]\( x = 3 \)[/tex]:
[tex]\[ g(3) = \frac{3}{\ln(3)} \][/tex]

3. Calculate the Derivative of the Function:
To find the critical points, we must calculate the derivative of [tex]\( g(x) \)[/tex] and set it to zero.
[tex]\[ g'(x) = \frac{d}{dx} \left( \frac{x}{\ln(x)} \right) \][/tex]
Using the quotient rule:
[tex]\[ g'(x) = \frac{\ln(x) \cdot 1 - x \cdot \frac{1}{x}}{(\ln(x))^2} = \frac{\ln(x) - 1}{(\ln(x))^2} \][/tex]
Setting [tex]\( g'(x) = 0 \)[/tex]:
[tex]\[ \frac{\ln(x) - 1}{(\ln(x))^2} = 0 \][/tex]
Solving [tex]\( \ln(x) - 1 = 0 \)[/tex] gives:
[tex]\[ \ln(x) = 1 \implies x = e \][/tex]
Since [tex]\( e \approx 2.72 \)[/tex], [tex]\( x = e \)[/tex] is within the interval [tex]\([2, 3]\)[/tex].

4. Evaluate the Function at the Critical Point:
- At [tex]\( x = 2.72 \)[/tex]:
[tex]\[ g(2.72) = \frac{2.72}{\ln(2.72)} \][/tex]

5. Compare Function Values:
To determine the absolute minimum, we compare the values of the function at the endpoints and the critical point:
- [tex]\( g(2) \approx 2.89 \)[/tex]
- [tex]\( g(3) \approx 2.73 \)[/tex]
- [tex]\( g(2.72) \approx 2.72 \)[/tex]

6. Determine the Minimum:
The minimum value among them is:
[tex]\[ g(2.72) \approx 2.72 \][/tex]

Therefore, the absolute minimum of the function on the interval [tex]\([2, 3]\)[/tex] is approximately [tex]\( 2.72 \)[/tex], occurring at [tex]\( x = 2.72 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.