Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

The table lists the values for two parameters, [tex]\( x \)[/tex] and [tex]\( y \)[/tex], of an experiment.

[tex]\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
2.5 & 6.25 \\
\hline
9.4 & 88.36 \\
\hline
15.6 & 243.63 \\
\hline
19.5 & 380.25 \\
\hline
25.8 & 665.64 \\
\hline
\end{array}
\][/tex]

What is the approximate value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex]?

A. 11
B. 16
C. 24
D. 43


Sagot :

To estimate the value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] based on the given data, we can use polynomial regression. The data points provided are [tex]\( (x, y) \)[/tex]:

[tex]\[ (2.5, 6.25), (9.4, 88.36), (15.6, 243.63), (19.5, 380.25), (25.8, 665.64) \][/tex]

Here are the steps to determine the approximate value of [tex]\( y \)[/tex] at [tex]\( x = 4 \)[/tex]:

1. Fit a Quadratic Polynomial:
To fit a quadratic polynomial to the given data points, we determine the coefficients [tex]\((a, b, c)\)[/tex] of the quadratic equation [tex]\(y = ax^2 + bx + c\)[/tex].

2. Find the Polynomial Coefficients:
The coefficients obtained for the best-fit quadratic polynomial to these data points are:
[tex]\[ a = 0.99900978, \quad b = 0.02863292, \quad c = -0.08883057 \][/tex]

3. Construct the Polynomial Equation:
Using these coefficients, the quadratic polynomial equation becomes:
[tex]\[ y = 0.99900978x^2 + 0.02863292x - 0.08883057 \][/tex]

4. Calculate [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex]:
Substitute [tex]\( x = 4 \)[/tex] into the polynomial equation:
[tex]\[ y = 0.99900978(4)^2 + 0.02863292(4) - 0.08883057 \][/tex]

5. Perform the Calculation:
[tex]\[ y = 0.99900978 \times 16 + 0.02863292 \times 4 - 0.08883057 \][/tex]
[tex]\[ y = 15.98415648 + 0.11453168 - 0.08883057 \][/tex]
[tex]\[ y \approx 16.0098576 \][/tex]

We find that the approximate value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] is:

[tex]\[ \boxed{16} \][/tex]