Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's carefully analyze the properties of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle to determine which of the given statements is true.
First, consider the characteristic features of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle:
- This type of triangle is an isosceles right triangle, meaning that the two legs are of equal length.
- Let's denote the length of each leg of this triangle as [tex]\(L\)[/tex].
In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the hypotenuse [tex]\(H\)[/tex] relates to the legs [tex]\(L\)[/tex] by the following relationship:
[tex]\[ H = L \sqrt{2} \][/tex]
Given this crucial observation, let's now evaluate each option:
A. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
- From the relationship [tex]\(H = L \sqrt{2}\)[/tex], we see that this statement is correct.
B. Each leg is [tex]\(\sqrt{3}\)[/tex] times as long as the hypotenuse.
- This would imply that [tex]\(L = H \sqrt{3}\)[/tex], which contradicts the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
C. The hypotenuse is [tex]\(\sqrt{3}\)[/tex] times as long as either leg.
- This would imply that [tex]\(H = L \sqrt{3}\)[/tex], which again contradicts the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
D. Each leg is [tex]\(\sqrt{2}\)[/tex] times as long as the hypotenuse.
- This would imply that [tex]\(L = H \sqrt{2}\)[/tex], which is the inverse of the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
From this analysis, the correct statement about a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle is:
A. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
First, consider the characteristic features of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle:
- This type of triangle is an isosceles right triangle, meaning that the two legs are of equal length.
- Let's denote the length of each leg of this triangle as [tex]\(L\)[/tex].
In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the hypotenuse [tex]\(H\)[/tex] relates to the legs [tex]\(L\)[/tex] by the following relationship:
[tex]\[ H = L \sqrt{2} \][/tex]
Given this crucial observation, let's now evaluate each option:
A. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
- From the relationship [tex]\(H = L \sqrt{2}\)[/tex], we see that this statement is correct.
B. Each leg is [tex]\(\sqrt{3}\)[/tex] times as long as the hypotenuse.
- This would imply that [tex]\(L = H \sqrt{3}\)[/tex], which contradicts the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
C. The hypotenuse is [tex]\(\sqrt{3}\)[/tex] times as long as either leg.
- This would imply that [tex]\(H = L \sqrt{3}\)[/tex], which again contradicts the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
D. Each leg is [tex]\(\sqrt{2}\)[/tex] times as long as the hypotenuse.
- This would imply that [tex]\(L = H \sqrt{2}\)[/tex], which is the inverse of the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
From this analysis, the correct statement about a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle is:
A. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.