Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's carefully analyze the properties of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle to determine which of the given statements is true.
First, consider the characteristic features of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle:
- This type of triangle is an isosceles right triangle, meaning that the two legs are of equal length.
- Let's denote the length of each leg of this triangle as [tex]\(L\)[/tex].
In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the hypotenuse [tex]\(H\)[/tex] relates to the legs [tex]\(L\)[/tex] by the following relationship:
[tex]\[ H = L \sqrt{2} \][/tex]
Given this crucial observation, let's now evaluate each option:
A. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
- From the relationship [tex]\(H = L \sqrt{2}\)[/tex], we see that this statement is correct.
B. Each leg is [tex]\(\sqrt{3}\)[/tex] times as long as the hypotenuse.
- This would imply that [tex]\(L = H \sqrt{3}\)[/tex], which contradicts the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
C. The hypotenuse is [tex]\(\sqrt{3}\)[/tex] times as long as either leg.
- This would imply that [tex]\(H = L \sqrt{3}\)[/tex], which again contradicts the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
D. Each leg is [tex]\(\sqrt{2}\)[/tex] times as long as the hypotenuse.
- This would imply that [tex]\(L = H \sqrt{2}\)[/tex], which is the inverse of the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
From this analysis, the correct statement about a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle is:
A. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
First, consider the characteristic features of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle:
- This type of triangle is an isosceles right triangle, meaning that the two legs are of equal length.
- Let's denote the length of each leg of this triangle as [tex]\(L\)[/tex].
In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the hypotenuse [tex]\(H\)[/tex] relates to the legs [tex]\(L\)[/tex] by the following relationship:
[tex]\[ H = L \sqrt{2} \][/tex]
Given this crucial observation, let's now evaluate each option:
A. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
- From the relationship [tex]\(H = L \sqrt{2}\)[/tex], we see that this statement is correct.
B. Each leg is [tex]\(\sqrt{3}\)[/tex] times as long as the hypotenuse.
- This would imply that [tex]\(L = H \sqrt{3}\)[/tex], which contradicts the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
C. The hypotenuse is [tex]\(\sqrt{3}\)[/tex] times as long as either leg.
- This would imply that [tex]\(H = L \sqrt{3}\)[/tex], which again contradicts the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
D. Each leg is [tex]\(\sqrt{2}\)[/tex] times as long as the hypotenuse.
- This would imply that [tex]\(L = H \sqrt{2}\)[/tex], which is the inverse of the true relationship [tex]\(H = L \sqrt{2}\)[/tex]. Therefore, this statement is incorrect.
From this analysis, the correct statement about a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle is:
A. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.