Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's solve the given system of equations step-by-step.
The system of equations is:
[tex]\[ \left\{\begin{array}{ll} (1) & 2x - y = 6 \\ (2) & 4x + 2y = 3 \end{array}\right. \][/tex]
### Step 1: Express one of the variables in terms of the other from one of the equations.
Let's take the first equation and solve for [tex]\( y \)[/tex]:
[tex]\[ 2x - y = 6 \implies y = 2x - 6 \][/tex]
### Step 2: Substitute this expression into the other equation.
Now, substitute [tex]\( y = 2x - 6 \)[/tex] into the second equation:
[tex]\[ 4x + 2(2x - 6) = 3 \][/tex]
### Step 3: Solve the resulting equation for [tex]\( x \)[/tex].
Expand and simplify the equation:
[tex]\[ 4x + 4x - 12 = 3 \\ 8x - 12 = 3 \\ 8x = 3 + 12 \\ 8x = 15 \\ x = \frac{15}{8} \][/tex]
### Step 4: Substitute the value of [tex]\( x \)[/tex] back into the equation from step 1 to find [tex]\( y \)[/tex].
Substitute [tex]\( x = \frac{15}{8} \)[/tex] into [tex]\( y = 2x - 6 \)[/tex]:
[tex]\[ y = 2\left(\frac{15}{8}\right) - 6 \\ y = \frac{30}{8} - 6 \\ y = \frac{30}{8} - \frac{48}{8} \\ y = \frac{30 - 48}{8} \\ y = \frac{-18}{8} \\ y = -\frac{9}{4} \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ \left( x, y \right) = \left( \frac{15}{8}, -\frac{9}{4} \right) \][/tex]
So the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are [tex]\( \frac{15}{8} \)[/tex] and [tex]\( -\frac{9}{4} \)[/tex] respectively.
The system of equations is:
[tex]\[ \left\{\begin{array}{ll} (1) & 2x - y = 6 \\ (2) & 4x + 2y = 3 \end{array}\right. \][/tex]
### Step 1: Express one of the variables in terms of the other from one of the equations.
Let's take the first equation and solve for [tex]\( y \)[/tex]:
[tex]\[ 2x - y = 6 \implies y = 2x - 6 \][/tex]
### Step 2: Substitute this expression into the other equation.
Now, substitute [tex]\( y = 2x - 6 \)[/tex] into the second equation:
[tex]\[ 4x + 2(2x - 6) = 3 \][/tex]
### Step 3: Solve the resulting equation for [tex]\( x \)[/tex].
Expand and simplify the equation:
[tex]\[ 4x + 4x - 12 = 3 \\ 8x - 12 = 3 \\ 8x = 3 + 12 \\ 8x = 15 \\ x = \frac{15}{8} \][/tex]
### Step 4: Substitute the value of [tex]\( x \)[/tex] back into the equation from step 1 to find [tex]\( y \)[/tex].
Substitute [tex]\( x = \frac{15}{8} \)[/tex] into [tex]\( y = 2x - 6 \)[/tex]:
[tex]\[ y = 2\left(\frac{15}{8}\right) - 6 \\ y = \frac{30}{8} - 6 \\ y = \frac{30}{8} - \frac{48}{8} \\ y = \frac{30 - 48}{8} \\ y = \frac{-18}{8} \\ y = -\frac{9}{4} \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ \left( x, y \right) = \left( \frac{15}{8}, -\frac{9}{4} \right) \][/tex]
So the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are [tex]\( \frac{15}{8} \)[/tex] and [tex]\( -\frac{9}{4} \)[/tex] respectively.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.