At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which equation represents the line that is perpendicular to the given line [tex]\(4x - 5y = 5\)[/tex] and passes through the point [tex]\((5,3)\)[/tex], follow these steps:
### Step 1: Find the slope of the given line
To find the slope of the given line [tex]\(4x - 5y = 5\)[/tex], we rewrite it in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
Starting with:
[tex]\[4x - 5y = 5\][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ -5y = -4x + 5 \][/tex]
[tex]\[ y = \frac{4}{5}x - 1 \][/tex]
So, the slope [tex]\(m_\text{given}\)[/tex] of the given line is [tex]\(\frac{4}{5}\)[/tex].
### Step 2: Find the slope of the perpendicular line
The slope of a line perpendicular to another line with slope [tex]\(m\)[/tex] is the negative reciprocal of [tex]\(m\)[/tex].
The slope of the given line is [tex]\(\frac{4}{5}\)[/tex], so the slope [tex]\(m_\perp\)[/tex] of the perpendicular line is:
[tex]\[ m_\perp = -\frac{1}{m_\text{given}} = -\frac{1}{\left(\frac{4}{5}\right)} = -\frac{5}{4} \][/tex]
### Step 3: Use the point-slope form to write the equation of the perpendicular line
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Given point [tex]\((5,3)\)[/tex] and slope [tex]\(m_\perp = -\frac{5}{4}\)[/tex], we substitute these values into the point-slope form:
[tex]\[ y - 3 = -\frac{5}{4}(x - 5) \][/tex]
### Step 4: Simplify to get the equation in standard form
First, distribute [tex]\( -\frac{5}{4} \)[/tex]:
[tex]\[ y - 3 = -\frac{5}{4}x + \frac{25}{4} \][/tex]
Add 3 to both sides:
[tex]\[ y = -\frac{5}{4}x + \frac{25}{4} + 3 \][/tex]
[tex]\[ y = -\frac{5}{4}x + \frac{25}{4} + \frac{12}{4} \][/tex]
[tex]\[ y = -\frac{5}{4}x + \frac{37}{4} \][/tex]
Rewrite this in standard form [tex]\(Ax + By = C\)[/tex], multiply through by 4 to clear fractions:
[tex]\[ 4y = -5x + 37 \][/tex]
[tex]\[ 5x + 4y = 37 \][/tex]
So, the equation of the line that is perpendicular to the given line [tex]\(4x - 5y = 5\)[/tex] and passes through the point [tex]\((5, 3)\)[/tex] is:
[tex]\[ 5x + 4y = 37 \][/tex]
Thus, the correct answer is:
[tex]\[ 5x + 4y = 37 \][/tex]
### Step 1: Find the slope of the given line
To find the slope of the given line [tex]\(4x - 5y = 5\)[/tex], we rewrite it in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
Starting with:
[tex]\[4x - 5y = 5\][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ -5y = -4x + 5 \][/tex]
[tex]\[ y = \frac{4}{5}x - 1 \][/tex]
So, the slope [tex]\(m_\text{given}\)[/tex] of the given line is [tex]\(\frac{4}{5}\)[/tex].
### Step 2: Find the slope of the perpendicular line
The slope of a line perpendicular to another line with slope [tex]\(m\)[/tex] is the negative reciprocal of [tex]\(m\)[/tex].
The slope of the given line is [tex]\(\frac{4}{5}\)[/tex], so the slope [tex]\(m_\perp\)[/tex] of the perpendicular line is:
[tex]\[ m_\perp = -\frac{1}{m_\text{given}} = -\frac{1}{\left(\frac{4}{5}\right)} = -\frac{5}{4} \][/tex]
### Step 3: Use the point-slope form to write the equation of the perpendicular line
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Given point [tex]\((5,3)\)[/tex] and slope [tex]\(m_\perp = -\frac{5}{4}\)[/tex], we substitute these values into the point-slope form:
[tex]\[ y - 3 = -\frac{5}{4}(x - 5) \][/tex]
### Step 4: Simplify to get the equation in standard form
First, distribute [tex]\( -\frac{5}{4} \)[/tex]:
[tex]\[ y - 3 = -\frac{5}{4}x + \frac{25}{4} \][/tex]
Add 3 to both sides:
[tex]\[ y = -\frac{5}{4}x + \frac{25}{4} + 3 \][/tex]
[tex]\[ y = -\frac{5}{4}x + \frac{25}{4} + \frac{12}{4} \][/tex]
[tex]\[ y = -\frac{5}{4}x + \frac{37}{4} \][/tex]
Rewrite this in standard form [tex]\(Ax + By = C\)[/tex], multiply through by 4 to clear fractions:
[tex]\[ 4y = -5x + 37 \][/tex]
[tex]\[ 5x + 4y = 37 \][/tex]
So, the equation of the line that is perpendicular to the given line [tex]\(4x - 5y = 5\)[/tex] and passes through the point [tex]\((5, 3)\)[/tex] is:
[tex]\[ 5x + 4y = 37 \][/tex]
Thus, the correct answer is:
[tex]\[ 5x + 4y = 37 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.