Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the quadratic equation [tex]\( m^2 - 5m - 14 = 0 \)[/tex], we want to find the values of [tex]\( m \)[/tex] that satisfy this equation. Here is the step-by-step solution process:
### Step 1: Identify a Quadratic Equation
The given quadratic equation is:
[tex]\[ m^2 - 5m - 14 = 0 \][/tex]
### Step 2: Factor the Quadratic Equation
We will factor this quadratic equation, which involves finding two numbers that multiply to give the constant term [tex]\(-14\)[/tex] and add up to give the coefficient of the linear term [tex]\(-5\)[/tex].
The factors of [tex]\(-14\)[/tex] that add up to [tex]\(-5\)[/tex] are [tex]\(-7\)[/tex] and [tex]\(2\)[/tex].
### Step 3: Write the Equation in Factored Form
Using the factors [tex]\(-7\)[/tex] and [tex]\(2\)[/tex], the quadratic equation can be written in its factored form as:
[tex]\[ (m - 7)(m + 2) = 0 \][/tex]
### Step 4: Solve for [tex]\( m \)[/tex]
The factored equation [tex]\( (m - 7)(m + 2) = 0 \)[/tex] gives us two potential solutions:
[tex]\[ m - 7 = 0 \quad \text{or} \quad m + 2 = 0 \][/tex]
Solving these equations for [tex]\( m \)[/tex], we get:
[tex]\[ m = 7 \][/tex]
[tex]\[ m = -2 \][/tex]
### Step 5: State the Solutions
Thus, the values of [tex]\( m \)[/tex] that satisfy the quadratic equation [tex]\( m^2 - 5m - 14 = 0 \)[/tex] are:
[tex]\[ m = 7 \][/tex]
[tex]\[ m = -2 \][/tex]
Hence, the correct answer is:
[tex]\[ x = 7 \ \text{and} \ x = -2 \][/tex]
The answer is:
[tex]\[ \boxed{x=7 \text{ and } x=-2} \][/tex]
### Step 1: Identify a Quadratic Equation
The given quadratic equation is:
[tex]\[ m^2 - 5m - 14 = 0 \][/tex]
### Step 2: Factor the Quadratic Equation
We will factor this quadratic equation, which involves finding two numbers that multiply to give the constant term [tex]\(-14\)[/tex] and add up to give the coefficient of the linear term [tex]\(-5\)[/tex].
The factors of [tex]\(-14\)[/tex] that add up to [tex]\(-5\)[/tex] are [tex]\(-7\)[/tex] and [tex]\(2\)[/tex].
### Step 3: Write the Equation in Factored Form
Using the factors [tex]\(-7\)[/tex] and [tex]\(2\)[/tex], the quadratic equation can be written in its factored form as:
[tex]\[ (m - 7)(m + 2) = 0 \][/tex]
### Step 4: Solve for [tex]\( m \)[/tex]
The factored equation [tex]\( (m - 7)(m + 2) = 0 \)[/tex] gives us two potential solutions:
[tex]\[ m - 7 = 0 \quad \text{or} \quad m + 2 = 0 \][/tex]
Solving these equations for [tex]\( m \)[/tex], we get:
[tex]\[ m = 7 \][/tex]
[tex]\[ m = -2 \][/tex]
### Step 5: State the Solutions
Thus, the values of [tex]\( m \)[/tex] that satisfy the quadratic equation [tex]\( m^2 - 5m - 14 = 0 \)[/tex] are:
[tex]\[ m = 7 \][/tex]
[tex]\[ m = -2 \][/tex]
Hence, the correct answer is:
[tex]\[ x = 7 \ \text{and} \ x = -2 \][/tex]
The answer is:
[tex]\[ \boxed{x=7 \text{ and } x=-2} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.