Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's calculate the measures of variability for the given data set step by step.
1. Order the Values:
The ordered data set is:
[tex]\[ 5, 17, 18, 20, 20, 21, 23, 26, 28, 29 \][/tex]
2. Median:
The middle value of the ordered data set (for 10 values) is the average of the 5th and 6th values.
[tex]\[ \frac{20 + 21}{2} = \frac{41}{2} = 20.5 \][/tex]
3. Range:
The range is the difference between the maximum and minimum values in the ordered data set.
[tex]\[ \text{Range} = 29 - 5 = 24 \][/tex]
So, the range is [tex]\(24\)[/tex] touchdowns.
4. Interquartile Range (IQR):
The interquartile range is the difference between the first quartile (Q1) and the third quartile (Q3).
- The first quartile ([tex]\(Q1\)[/tex]) is the median of the first half of the ordered data, excluding the overall median. The first half is:
[tex]\[ 5, 17, 18, 20, 20 \][/tex]
For these 5 values, the median (Q1) is the 3rd value:
[tex]\[ Q1 = 18.5 \][/tex]
- The third quartile ([tex]\(Q3\)[/tex]) is the median of the second half of the ordered data, excluding the overall median. The second half is:
[tex]\[ 21, 23, 26, 28, 29 \][/tex]
For these 5 values, the median (Q3) is the 3rd value:
[tex]\[ Q3 = 25.25 \][/tex]
- The interquartile range (IQR) is calculated as:
[tex]\[ \text{IQR} = Q3 - Q1 = 25.25 - 18.5 = 6.75 \][/tex]
Therefore:
- The range is [tex]\(24\)[/tex] touchdowns.
- The interquartile range is [tex]\(6.75\)[/tex] touchdowns.
1. Order the Values:
The ordered data set is:
[tex]\[ 5, 17, 18, 20, 20, 21, 23, 26, 28, 29 \][/tex]
2. Median:
The middle value of the ordered data set (for 10 values) is the average of the 5th and 6th values.
[tex]\[ \frac{20 + 21}{2} = \frac{41}{2} = 20.5 \][/tex]
3. Range:
The range is the difference between the maximum and minimum values in the ordered data set.
[tex]\[ \text{Range} = 29 - 5 = 24 \][/tex]
So, the range is [tex]\(24\)[/tex] touchdowns.
4. Interquartile Range (IQR):
The interquartile range is the difference between the first quartile (Q1) and the third quartile (Q3).
- The first quartile ([tex]\(Q1\)[/tex]) is the median of the first half of the ordered data, excluding the overall median. The first half is:
[tex]\[ 5, 17, 18, 20, 20 \][/tex]
For these 5 values, the median (Q1) is the 3rd value:
[tex]\[ Q1 = 18.5 \][/tex]
- The third quartile ([tex]\(Q3\)[/tex]) is the median of the second half of the ordered data, excluding the overall median. The second half is:
[tex]\[ 21, 23, 26, 28, 29 \][/tex]
For these 5 values, the median (Q3) is the 3rd value:
[tex]\[ Q3 = 25.25 \][/tex]
- The interquartile range (IQR) is calculated as:
[tex]\[ \text{IQR} = Q3 - Q1 = 25.25 - 18.5 = 6.75 \][/tex]
Therefore:
- The range is [tex]\(24\)[/tex] touchdowns.
- The interquartile range is [tex]\(6.75\)[/tex] touchdowns.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.