At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the number of solutions for the given system of equations:
[tex]\[ \left\{\begin{array}{r} 2x + y = -2 \\ x + y = -1 \end{array}\right. \][/tex]
we can proceed as follows:
1. Write down the system of equations:
[tex]\[ \begin{cases} 2x + y = -2 \quad \text{(1)} \\ x + y = -1 \quad \text{(2)} \end{cases} \][/tex]
2. Represent the system in matrix form [tex]\( \mathbf{A} \mathbf{x} = \mathbf{b} \)[/tex]:
[tex]\[ \mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -2 \\ -1 \end{pmatrix} \][/tex]
3. Calculate the determinant of the coefficient matrix [tex]\( \mathbf{A} \)[/tex]:
The determinant [tex]\( \Delta \)[/tex] of matrix [tex]\( \mathbf{A} \)[/tex] can be determined as follows:
[tex]\[ \Delta = \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2 \cdot 1) - (1 \cdot 1) = 2 - 1 = 1 \][/tex]
4. Analyze the determinant:
Since the determinant [tex]\( \Delta \)[/tex] is [tex]\( 1 \)[/tex], which is non-zero, it implies that the coefficient matrix [tex]\( \mathbf{A} \)[/tex] is invertible. This means the system of equations has a unique solution.
By this analysis, we conclude that the given system of linear equations has exactly one solution.
Thus, the correct answer is:
- One
[tex]\[ \left\{\begin{array}{r} 2x + y = -2 \\ x + y = -1 \end{array}\right. \][/tex]
we can proceed as follows:
1. Write down the system of equations:
[tex]\[ \begin{cases} 2x + y = -2 \quad \text{(1)} \\ x + y = -1 \quad \text{(2)} \end{cases} \][/tex]
2. Represent the system in matrix form [tex]\( \mathbf{A} \mathbf{x} = \mathbf{b} \)[/tex]:
[tex]\[ \mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -2 \\ -1 \end{pmatrix} \][/tex]
3. Calculate the determinant of the coefficient matrix [tex]\( \mathbf{A} \)[/tex]:
The determinant [tex]\( \Delta \)[/tex] of matrix [tex]\( \mathbf{A} \)[/tex] can be determined as follows:
[tex]\[ \Delta = \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2 \cdot 1) - (1 \cdot 1) = 2 - 1 = 1 \][/tex]
4. Analyze the determinant:
Since the determinant [tex]\( \Delta \)[/tex] is [tex]\( 1 \)[/tex], which is non-zero, it implies that the coefficient matrix [tex]\( \mathbf{A} \)[/tex] is invertible. This means the system of equations has a unique solution.
By this analysis, we conclude that the given system of linear equations has exactly one solution.
Thus, the correct answer is:
- One
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.