Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

The sides of an equilateral triangle are 8 units long. What is the length of the altitude of the triangle?

A. [tex]\(5 \sqrt{2}\)[/tex] units
B. [tex]\(4 \sqrt{3}\)[/tex] units
C. [tex]\(10 \sqrt{2}\)[/tex] units
D. [tex]\(16 \sqrt{5}\)[/tex] units


Sagot :

To find the length of the altitude of an equilateral triangle with a side length of 8 units, we use the following steps:

1. Recall the formula for the altitude [tex]\( h \)[/tex] of an equilateral triangle with side length [tex]\( a \)[/tex]:
[tex]\[ h = \frac{a \sqrt{3}}{2} \][/tex]

2. Substitute the given side length [tex]\( a = 8 \)[/tex] units into the formula:
[tex]\[ h = \frac{8 \sqrt{3}}{2} \][/tex]

3. Simplify the expression:
[tex]\[ h = 4 \sqrt{3} \][/tex]

Therefore, the altitude of the equilateral triangle with a side length of 8 units is [tex]\( 4 \sqrt{3} \)[/tex] units.

So, the correct answer is:
[tex]\[ 4 \sqrt{3} \text{ units} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.