At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Tomas wrote the equation [tex]\( y = 3x + \frac{3}{4} \)[/tex]. Sandra's equation has the same solutions as Tomas's equation. Which equation could be Sandra's?

A. [tex]\(-6x + y = \frac{3}{2}\)[/tex]
B. [tex]\(6x + y = \frac{3}{2}\)[/tex]
C. [tex]\(-6x + 2y = \frac{3}{2}\)[/tex]
D. [tex]\(6x + 2y = \frac{3}{2}\)[/tex]

Sagot :

Let's analyze Tomas's equation and compare it to each of Sandra's given equations to determine which of Sandra's equations has all the same solutions as Tomas's equation.

Tomas's equation is given as:
[tex]\[ y = 3x + \frac{3}{4} \][/tex]

We need to transform each of Sandra's given equations into the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.

1. The first equation:
[tex]\[ -6x + y = \frac{3}{2} \][/tex]
We can solve for [tex]\( y \)[/tex]:
[tex]\[ y = 6x + \frac{3}{2} \][/tex]
This equation has a slope of 6, which is not equal to Tomas's slope of 3.

2. The second equation:
[tex]\[ 6x + y = \frac{3}{2} \][/tex]
We can solve for [tex]\( y \)[/tex]:
[tex]\[ y = -6x + \frac{3}{2} \][/tex]
This equation has a slope of -6, which is not equal to Tomas's slope of 3.

3. The third equation:
[tex]\[ -6x + 2y = \frac{3}{2} \][/tex]
We can solve for [tex]\( y \)[/tex]:
First, isolate [tex]\( y \)[/tex] by dividing everything by 2:
[tex]\[ 2y = 6x + \frac{3}{2} \][/tex]
[tex]\[ y = 3x + \frac{3}{4} \][/tex]
This equation simplifies exactly to Tomas's equation.

4. The fourth equation:
[tex]\[ 6x + 2y = \frac{3}{2} \][/tex]
We can solve for [tex]\( y \)[/tex]:
First, isolate [tex]\( y \)[/tex] by dividing everything by 2:
[tex]\[ 2y = -6x + \frac{3}{2} \][/tex]
[tex]\[ y = -3x + \frac{3}{4} \][/tex]
This equation has a slope of -3, which is not equal to Tomas's slope of 3.

Among all four of Sandra's equations, only the third equation:
[tex]\[ -6x + 2y = \frac{3}{2} \][/tex]
is equivalent to Tomas's equation:
[tex]\[ y = 3x + \frac{3}{4} \][/tex]

Thus, Sandra's equation which has all the same solutions as Tomas's equation is:
[tex]\[ -6x + 2y = \frac{3}{2} \][/tex]

The correct choice is:
[tex]\[ \boxed{-6x + 2y = \frac{3}{2}} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.