Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To calculate the molar solubility of calcium hydroxide [tex]\(\text{Ca(OH)}_2\)[/tex] in water, we will use the solubility product constant ([tex]\(K_{\text{sp}}\)[/tex]).
Given:
[tex]\[ K_{\text{sp}} \text{ for } \text{Ca(OH)}_2 = 5.02 \][/tex]
The dissociation of calcium hydroxide in water is represented by the equation:
[tex]\[ \text{Ca(OH)}_2(s) \rightleftharpoons \text{Ca}^{2+}(aq) + 2\text{OH}^-(aq) \][/tex]
Let [tex]\( s \)[/tex] be the molar solubility of [tex]\(\text{Ca(OH)}_2\)[/tex]. At equilibrium, the concentrations of the ions in solution will be:
[tex]\[ [\text{Ca}^{2+}] = s \][/tex]
[tex]\[ [\text{OH}^-] = 2s \][/tex]
Given the expression for the solubility product constant:
[tex]\[ K_{\text{sp}} = [\text{Ca}^{2+}][\text{OH}^-]^2 \][/tex]
Substitute the expressions for the ion concentrations:
[tex]\[ K_{\text{sp}} = s \cdot (2s)^2 \][/tex]
[tex]\[ K_{\text{sp}} = s \cdot 4s^2 \][/tex]
[tex]\[ K_{\text{sp}} = 4s^3 \][/tex]
Now, solve for [tex]\( s \)[/tex]:
[tex]\[ 4s^3 = K_{\text{sp}} \][/tex]
[tex]\[ s^3 = \frac{K_{\text{sp}}}{4} \][/tex]
[tex]\[ s = \left( \frac{5.02}{4} \right)^{1/3} \][/tex]
To find the numeric value of molar solubility [tex]\( s \)[/tex]:
[tex]\[ s \approx 1.0786517240005968 \, \text{M} \][/tex]
Therefore, the molar solubility of [tex]\(\text{Ca(OH)}_2\)[/tex] in water is closest to:
[tex]\[ 1.08 \times 10^{-2} \, \text{M} \][/tex]
Thus, the correct answer is:
[tex]\[ 1.08 \times 10^{-2} \, \text{M} \][/tex]
Given:
[tex]\[ K_{\text{sp}} \text{ for } \text{Ca(OH)}_2 = 5.02 \][/tex]
The dissociation of calcium hydroxide in water is represented by the equation:
[tex]\[ \text{Ca(OH)}_2(s) \rightleftharpoons \text{Ca}^{2+}(aq) + 2\text{OH}^-(aq) \][/tex]
Let [tex]\( s \)[/tex] be the molar solubility of [tex]\(\text{Ca(OH)}_2\)[/tex]. At equilibrium, the concentrations of the ions in solution will be:
[tex]\[ [\text{Ca}^{2+}] = s \][/tex]
[tex]\[ [\text{OH}^-] = 2s \][/tex]
Given the expression for the solubility product constant:
[tex]\[ K_{\text{sp}} = [\text{Ca}^{2+}][\text{OH}^-]^2 \][/tex]
Substitute the expressions for the ion concentrations:
[tex]\[ K_{\text{sp}} = s \cdot (2s)^2 \][/tex]
[tex]\[ K_{\text{sp}} = s \cdot 4s^2 \][/tex]
[tex]\[ K_{\text{sp}} = 4s^3 \][/tex]
Now, solve for [tex]\( s \)[/tex]:
[tex]\[ 4s^3 = K_{\text{sp}} \][/tex]
[tex]\[ s^3 = \frac{K_{\text{sp}}}{4} \][/tex]
[tex]\[ s = \left( \frac{5.02}{4} \right)^{1/3} \][/tex]
To find the numeric value of molar solubility [tex]\( s \)[/tex]:
[tex]\[ s \approx 1.0786517240005968 \, \text{M} \][/tex]
Therefore, the molar solubility of [tex]\(\text{Ca(OH)}_2\)[/tex] in water is closest to:
[tex]\[ 1.08 \times 10^{-2} \, \text{M} \][/tex]
Thus, the correct answer is:
[tex]\[ 1.08 \times 10^{-2} \, \text{M} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.