Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Calculate the molar solubility of calcium hydroxide [tex]\(\left( Ca(OH)_2 \right)\)[/tex] in water. Use 5.02 as the constant of [tex]\( Ca(OH)_2 \)[/tex].

A. [tex]\( 1.58 \times 10^{-3} \, M \)[/tex]
B. [tex]\( 2.24 \times 10^{-3} \, M \)[/tex]
C. [tex]\( 1.08 \times 10^{-2} \, M \)[/tex]
D. [tex]\( 1.71 \times 10^{-2} \, M \)[/tex]


Sagot :

To calculate the molar solubility of calcium hydroxide [tex]\(\text{Ca(OH)}_2\)[/tex] in water, we will use the solubility product constant ([tex]\(K_{\text{sp}}\)[/tex]).

Given:
[tex]\[ K_{\text{sp}} \text{ for } \text{Ca(OH)}_2 = 5.02 \][/tex]

The dissociation of calcium hydroxide in water is represented by the equation:
[tex]\[ \text{Ca(OH)}_2(s) \rightleftharpoons \text{Ca}^{2+}(aq) + 2\text{OH}^-(aq) \][/tex]

Let [tex]\( s \)[/tex] be the molar solubility of [tex]\(\text{Ca(OH)}_2\)[/tex]. At equilibrium, the concentrations of the ions in solution will be:
[tex]\[ [\text{Ca}^{2+}] = s \][/tex]
[tex]\[ [\text{OH}^-] = 2s \][/tex]

Given the expression for the solubility product constant:
[tex]\[ K_{\text{sp}} = [\text{Ca}^{2+}][\text{OH}^-]^2 \][/tex]

Substitute the expressions for the ion concentrations:
[tex]\[ K_{\text{sp}} = s \cdot (2s)^2 \][/tex]
[tex]\[ K_{\text{sp}} = s \cdot 4s^2 \][/tex]
[tex]\[ K_{\text{sp}} = 4s^3 \][/tex]

Now, solve for [tex]\( s \)[/tex]:
[tex]\[ 4s^3 = K_{\text{sp}} \][/tex]
[tex]\[ s^3 = \frac{K_{\text{sp}}}{4} \][/tex]
[tex]\[ s = \left( \frac{5.02}{4} \right)^{1/3} \][/tex]

To find the numeric value of molar solubility [tex]\( s \)[/tex]:
[tex]\[ s \approx 1.0786517240005968 \, \text{M} \][/tex]

Therefore, the molar solubility of [tex]\(\text{Ca(OH)}_2\)[/tex] in water is closest to:
[tex]\[ 1.08 \times 10^{-2} \, \text{M} \][/tex]

Thus, the correct answer is:
[tex]\[ 1.08 \times 10^{-2} \, \text{M} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.