Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To calculate the average velocity of the car, we need to follow these steps for each segment of the journey:
1. Calculate the average time for each segment:
First, for the distance of [tex]\(0.25 \, m\)[/tex]:
- Trial 1: [tex]\(2.24 \, s\)[/tex]
- Trial 2: [tex]\(2.21 \, s\)[/tex]
- Trial 3: [tex]\(2.23 \, s\)[/tex]
To find the average time, sum the times and divide by the number of trials:
[tex]\[ \text{Average time for first } 0.25 \, m = \frac{2.24 + 2.21 + 2.23}{3} = 2.2266666666666666 \, s \][/tex]
Next, for the distance from [tex]\(0.25 \, m\)[/tex] to [tex]\(0.50 \, m\)[/tex] (i.e., the second [tex]\(0.25 \, m\)[/tex]):
- Trial 1: [tex]\(3.16 \, s\)[/tex]
- Trial 2: [tex]\(3.08 \, s\)[/tex]
- Trial 3: [tex]\(3.15 \, s\)[/tex]
To find the average time, sum the times and divide by the number of trials:
[tex]\[ \text{Average time for second } 0.25 \, m = \frac{3.16 + 3.08 + 3.15}{3} = 3.1300000000000003 \, s \][/tex]
2. Calculate the average velocity for each segment:
The formula for average velocity is given by:
[tex]\[ \text{Average velocity} = \frac{\text{distance}}{\text{time}} \][/tex]
For the first [tex]\(0.25 \, m\)[/tex]:
[tex]\[ \text{Average velocity for first } 0.25 \, m = \frac{0.25 \, m}{2.2266666666666666 \, s} = 0.11227544910179642 \, m/s \][/tex]
For the second [tex]\(0.25 \, m\)[/tex]:
[tex]\[ \text{Average velocity for second } 0.25 \, m = \frac{0.25 \, m}{3.1300000000000003 \, s} = 0.07987220447284345 \, m/s \][/tex]
3. Provide the final answers:
- The average velocity of the car over the first [tex]\(0.25 \, m\)[/tex] is [tex]\(0.112 \, m/s\)[/tex] (rounded to three decimal places).
- The average velocity of the car over the second [tex]\(0.25 \, m\)[/tex] is [tex]\(0.080 \, m/s\)[/tex] (rounded to three decimal places).
1. Calculate the average time for each segment:
First, for the distance of [tex]\(0.25 \, m\)[/tex]:
- Trial 1: [tex]\(2.24 \, s\)[/tex]
- Trial 2: [tex]\(2.21 \, s\)[/tex]
- Trial 3: [tex]\(2.23 \, s\)[/tex]
To find the average time, sum the times and divide by the number of trials:
[tex]\[ \text{Average time for first } 0.25 \, m = \frac{2.24 + 2.21 + 2.23}{3} = 2.2266666666666666 \, s \][/tex]
Next, for the distance from [tex]\(0.25 \, m\)[/tex] to [tex]\(0.50 \, m\)[/tex] (i.e., the second [tex]\(0.25 \, m\)[/tex]):
- Trial 1: [tex]\(3.16 \, s\)[/tex]
- Trial 2: [tex]\(3.08 \, s\)[/tex]
- Trial 3: [tex]\(3.15 \, s\)[/tex]
To find the average time, sum the times and divide by the number of trials:
[tex]\[ \text{Average time for second } 0.25 \, m = \frac{3.16 + 3.08 + 3.15}{3} = 3.1300000000000003 \, s \][/tex]
2. Calculate the average velocity for each segment:
The formula for average velocity is given by:
[tex]\[ \text{Average velocity} = \frac{\text{distance}}{\text{time}} \][/tex]
For the first [tex]\(0.25 \, m\)[/tex]:
[tex]\[ \text{Average velocity for first } 0.25 \, m = \frac{0.25 \, m}{2.2266666666666666 \, s} = 0.11227544910179642 \, m/s \][/tex]
For the second [tex]\(0.25 \, m\)[/tex]:
[tex]\[ \text{Average velocity for second } 0.25 \, m = \frac{0.25 \, m}{3.1300000000000003 \, s} = 0.07987220447284345 \, m/s \][/tex]
3. Provide the final answers:
- The average velocity of the car over the first [tex]\(0.25 \, m\)[/tex] is [tex]\(0.112 \, m/s\)[/tex] (rounded to three decimal places).
- The average velocity of the car over the second [tex]\(0.25 \, m\)[/tex] is [tex]\(0.080 \, m/s\)[/tex] (rounded to three decimal places).
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.