At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the matrix inequality [tex]\(\left[\begin{array}{ccc}
2 - x & x & 1 \\
2 + x & -x + 2 & -3 \\
x & 3 & 0
\end{array}\right] \leq 0\)[/tex], we need to find the values of [tex]\(x\)[/tex] for which every element in the matrix is less than or equal to 0.
Let's analyze each element individually:
1. [tex]\(2 - x \leq 0\)[/tex]:
[tex]\[ 2 - x \leq 0 \][/tex]
[tex]\[ -x \leq -2 \][/tex]
[tex]\[ x \geq 2 \][/tex]
2. [tex]\(x \leq 0\)[/tex]:
[tex]\[ x \leq 0 \][/tex]
3. [tex]\(1 \leq 0\)[/tex]:
[tex]\[ 1 \leq 0 \][/tex]
This inequality is not true for any [tex]\(x\)[/tex]. It means that this particular matrix cannot satisfy the given inequality for all elements because [tex]\(1 \leq 0\)[/tex] is never true no matter what value [tex]\(x\)[/tex] takes.
Since one of the conditions cannot be met (specifically, [tex]\(1 \leq 0\)[/tex]), it implies that there are no values of [tex]\(x\)[/tex] that can make every single element in this matrix less than or equal to 0.
Therefore, there are no solutions for [tex]\(x\)[/tex] that satisfy the entire matrix inequality.
Let's analyze each element individually:
1. [tex]\(2 - x \leq 0\)[/tex]:
[tex]\[ 2 - x \leq 0 \][/tex]
[tex]\[ -x \leq -2 \][/tex]
[tex]\[ x \geq 2 \][/tex]
2. [tex]\(x \leq 0\)[/tex]:
[tex]\[ x \leq 0 \][/tex]
3. [tex]\(1 \leq 0\)[/tex]:
[tex]\[ 1 \leq 0 \][/tex]
This inequality is not true for any [tex]\(x\)[/tex]. It means that this particular matrix cannot satisfy the given inequality for all elements because [tex]\(1 \leq 0\)[/tex] is never true no matter what value [tex]\(x\)[/tex] takes.
Since one of the conditions cannot be met (specifically, [tex]\(1 \leq 0\)[/tex]), it implies that there are no values of [tex]\(x\)[/tex] that can make every single element in this matrix less than or equal to 0.
Therefore, there are no solutions for [tex]\(x\)[/tex] that satisfy the entire matrix inequality.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.