Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the system of linear equations given by the matrix equation
[tex]\[ \left[\begin{array}{cc} 2 & 6 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 2 \\ -3 \end{array}\right], \][/tex]
we need to find the values of [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex].
By inspecting this matrix equation, multiplying out the left side gives us:
[tex]\[ \left[\begin{array}{cc} 2 & 6 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 2x_1 + 6x_2 \\ x_2 \end{array}\right] . \][/tex]
This must equal the right-hand side:
[tex]\[ \left[\begin{array}{c} 2 \\ -3 \end{array}\right]. \][/tex]
Therefore, we get the following system of equations:
1. [tex]\( 2x_1 + 6x_2 = 2 \)[/tex]
2. [tex]\( x_2 = -3 \)[/tex]
Substitute [tex]\( x_2 = -3 \)[/tex] into the first equation:
[tex]\[ 2x_1 + 6(-3) = 2. \][/tex]
This simplifies to:
[tex]\[ 2x_1 - 18 = 2, \][/tex]
which further simplifies to:
[tex]\[ 2x_1 = 20, \][/tex]
so:
[tex]\[ x_1 = 10. \][/tex]
Thus, the solution [tex]\( \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \)[/tex] is [tex]\( \left[\begin{array}{c} 10 \\ -3 \end{array}\right] \)[/tex].
Now, we need to identify which equation among the given choices correctly matches this solution process. The correct option is:
[tex]\[ \left[\begin{array}{l} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 0.5 & -3 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} 2 \\ -3 \end{array}\right]. \][/tex]
Hence, the correct equation to solve the given problem is:
[tex]\[ \left[\begin{array}{l} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 0.5 & -3 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} 2 \\ -3 \end{array}\right]. \][/tex]
[tex]\[ \left[\begin{array}{cc} 2 & 6 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 2 \\ -3 \end{array}\right], \][/tex]
we need to find the values of [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex].
By inspecting this matrix equation, multiplying out the left side gives us:
[tex]\[ \left[\begin{array}{cc} 2 & 6 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 2x_1 + 6x_2 \\ x_2 \end{array}\right] . \][/tex]
This must equal the right-hand side:
[tex]\[ \left[\begin{array}{c} 2 \\ -3 \end{array}\right]. \][/tex]
Therefore, we get the following system of equations:
1. [tex]\( 2x_1 + 6x_2 = 2 \)[/tex]
2. [tex]\( x_2 = -3 \)[/tex]
Substitute [tex]\( x_2 = -3 \)[/tex] into the first equation:
[tex]\[ 2x_1 + 6(-3) = 2. \][/tex]
This simplifies to:
[tex]\[ 2x_1 - 18 = 2, \][/tex]
which further simplifies to:
[tex]\[ 2x_1 = 20, \][/tex]
so:
[tex]\[ x_1 = 10. \][/tex]
Thus, the solution [tex]\( \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \)[/tex] is [tex]\( \left[\begin{array}{c} 10 \\ -3 \end{array}\right] \)[/tex].
Now, we need to identify which equation among the given choices correctly matches this solution process. The correct option is:
[tex]\[ \left[\begin{array}{l} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 0.5 & -3 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} 2 \\ -3 \end{array}\right]. \][/tex]
Hence, the correct equation to solve the given problem is:
[tex]\[ \left[\begin{array}{l} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 0.5 & -3 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} 2 \\ -3 \end{array}\right]. \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.