Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Rewrite the solution to the inequality given in interval notation as [tex]\((2, \infty)\)[/tex] in another form.

Sagot :

Certainly! Let's interpret and express the given solution in interval notation step by step.

1. Interval Notation Interpretation:
- The interval is given as [tex]\((2, \infty)\)[/tex].
- This means that we are considering all numbers greater than 2 but not including 2 itself.
- The interval starts just after 2 and extends endlessly in the positive direction.

2. Understanding the Interval:
- A notation of the form [tex]\( (a, b) \)[/tex] typically means [tex]\( a < x < b \)[/tex].
- Here, [tex]\(a = 2\)[/tex] and [tex]\(b = \infty\)[/tex], so [tex]\( 2 < x < \infty \)[/tex].
- The number 2 is not included in the interval, which is why we use a parenthesis instead of a bracket.

3. Inequality Form:
- In inequality form, this can be expressed as [tex]\( x > 2 \)[/tex].
- This directly translates the idea that [tex]\( x \)[/tex] can be any number greater than 2.

4. In Words:
- You might describe the solution set as: "The set of all numbers greater than 2."

So, to summarize, another way to express the solution [tex]\((2, \infty)\)[/tex] in words or another mathematical form is:
[tex]\[ x > 2 \][/tex]

This clearly indicates that the number we are looking for must be any value strictly greater than 2.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.