Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's start by completing the table for the function [tex]\( y = 0.1^x \)[/tex].
First, we will calculate [tex]\( y \)[/tex] for each given value of [tex]\( x \)[/tex].
1. When [tex]\( x = -2 \)[/tex]:
[tex]\[ y = 0.1^{-2} \][/tex]
Recall that [tex]\( 0.1^{-2} = (0.1)^{-2} = \left(\frac{1}{10}\right)^{-2} = 10^2 = 100 \)[/tex].
Therefore, [tex]\( y = 100 \)[/tex].
2. When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 0.1^{-1} \][/tex]
Recall that [tex]\( 0.1^{-1} = (0.1)^{-1} = \left(\frac{1}{10}\right)^{-1} = 10 \)[/tex].
Therefore, [tex]\( y = 10 \)[/tex].
3. When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0.1^0 \][/tex]
We know any number raised to the power of 0 is 1.
Therefore, [tex]\( y = 1 \)[/tex].
4. When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 0.1^1 \][/tex]
We know that any number raised to the power of 1 is the number itself.
Therefore, [tex]\( y = 0.1 \)[/tex].
Now the table is completed as follows:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & 100 \\ \hline -1 & 10 \\ \hline 0 & 1 \\ \hline 1 & 0.1 \\ \hline \end{tabular} \][/tex]
Next, we need to graph the function [tex]\( y = 0.1^x \)[/tex].
To plot the function, we plot the points [tex]\((-2, 100)\)[/tex], [tex]\((-1, 10)\)[/tex], [tex]\((0, 1)\)[/tex], and [tex]\((1, 0.1)\)[/tex].
Here’s a step-by-step guide to sketching the graph manually:
1. Draw the coordinate axes:
Label the [tex]\( x \)[/tex]-axis and the [tex]\( y \)[/tex]-axis.
2. Plot each point:
- For [tex]\( (-2, 100) \)[/tex], place a point far above the origin, as [tex]\( y = 100 \)[/tex] is a large value.
- For [tex]\( (-1, 10) \)[/tex], place a point above the origin at [tex]\( x = -1 \)[/tex] and [tex]\( y = 10 \)[/tex].
- For [tex]\( (0, 1) \)[/tex], place a point at the origin’s immediate right, as [tex]\( y = 1 \)[/tex].
- For [tex]\( (1, 0.1) \)[/tex], place a point slightly above the [tex]\( x \)[/tex]-axis at [tex]\( x = 1 \)[/tex].
3. Draw a smooth curve:
Connect these points with a smooth and continuous curve, ensuring that the curve decreases rapidly as [tex]\( x \)[/tex] increases and increases rapidly as [tex]\( x \)[/tex] decreases.
4. Label the graph:
Add a title “Graph of [tex]\( y = 0.1^x \)[/tex]” and label the respective axes.
The resulting graph will show an exponential decay function. The function has a steep decline on the positive side of the [tex]\( x \)[/tex]-axis and surges upward very rapidly on the negative side of the [tex]\( x \)[/tex]-axis.
First, we will calculate [tex]\( y \)[/tex] for each given value of [tex]\( x \)[/tex].
1. When [tex]\( x = -2 \)[/tex]:
[tex]\[ y = 0.1^{-2} \][/tex]
Recall that [tex]\( 0.1^{-2} = (0.1)^{-2} = \left(\frac{1}{10}\right)^{-2} = 10^2 = 100 \)[/tex].
Therefore, [tex]\( y = 100 \)[/tex].
2. When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 0.1^{-1} \][/tex]
Recall that [tex]\( 0.1^{-1} = (0.1)^{-1} = \left(\frac{1}{10}\right)^{-1} = 10 \)[/tex].
Therefore, [tex]\( y = 10 \)[/tex].
3. When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0.1^0 \][/tex]
We know any number raised to the power of 0 is 1.
Therefore, [tex]\( y = 1 \)[/tex].
4. When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 0.1^1 \][/tex]
We know that any number raised to the power of 1 is the number itself.
Therefore, [tex]\( y = 0.1 \)[/tex].
Now the table is completed as follows:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & 100 \\ \hline -1 & 10 \\ \hline 0 & 1 \\ \hline 1 & 0.1 \\ \hline \end{tabular} \][/tex]
Next, we need to graph the function [tex]\( y = 0.1^x \)[/tex].
To plot the function, we plot the points [tex]\((-2, 100)\)[/tex], [tex]\((-1, 10)\)[/tex], [tex]\((0, 1)\)[/tex], and [tex]\((1, 0.1)\)[/tex].
Here’s a step-by-step guide to sketching the graph manually:
1. Draw the coordinate axes:
Label the [tex]\( x \)[/tex]-axis and the [tex]\( y \)[/tex]-axis.
2. Plot each point:
- For [tex]\( (-2, 100) \)[/tex], place a point far above the origin, as [tex]\( y = 100 \)[/tex] is a large value.
- For [tex]\( (-1, 10) \)[/tex], place a point above the origin at [tex]\( x = -1 \)[/tex] and [tex]\( y = 10 \)[/tex].
- For [tex]\( (0, 1) \)[/tex], place a point at the origin’s immediate right, as [tex]\( y = 1 \)[/tex].
- For [tex]\( (1, 0.1) \)[/tex], place a point slightly above the [tex]\( x \)[/tex]-axis at [tex]\( x = 1 \)[/tex].
3. Draw a smooth curve:
Connect these points with a smooth and continuous curve, ensuring that the curve decreases rapidly as [tex]\( x \)[/tex] increases and increases rapidly as [tex]\( x \)[/tex] decreases.
4. Label the graph:
Add a title “Graph of [tex]\( y = 0.1^x \)[/tex]” and label the respective axes.
The resulting graph will show an exponential decay function. The function has a steep decline on the positive side of the [tex]\( x \)[/tex]-axis and surges upward very rapidly on the negative side of the [tex]\( x \)[/tex]-axis.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.