Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's start by completing the table for the function [tex]\( y = 0.1^x \)[/tex].
First, we will calculate [tex]\( y \)[/tex] for each given value of [tex]\( x \)[/tex].
1. When [tex]\( x = -2 \)[/tex]:
[tex]\[ y = 0.1^{-2} \][/tex]
Recall that [tex]\( 0.1^{-2} = (0.1)^{-2} = \left(\frac{1}{10}\right)^{-2} = 10^2 = 100 \)[/tex].
Therefore, [tex]\( y = 100 \)[/tex].
2. When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 0.1^{-1} \][/tex]
Recall that [tex]\( 0.1^{-1} = (0.1)^{-1} = \left(\frac{1}{10}\right)^{-1} = 10 \)[/tex].
Therefore, [tex]\( y = 10 \)[/tex].
3. When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0.1^0 \][/tex]
We know any number raised to the power of 0 is 1.
Therefore, [tex]\( y = 1 \)[/tex].
4. When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 0.1^1 \][/tex]
We know that any number raised to the power of 1 is the number itself.
Therefore, [tex]\( y = 0.1 \)[/tex].
Now the table is completed as follows:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & 100 \\ \hline -1 & 10 \\ \hline 0 & 1 \\ \hline 1 & 0.1 \\ \hline \end{tabular} \][/tex]
Next, we need to graph the function [tex]\( y = 0.1^x \)[/tex].
To plot the function, we plot the points [tex]\((-2, 100)\)[/tex], [tex]\((-1, 10)\)[/tex], [tex]\((0, 1)\)[/tex], and [tex]\((1, 0.1)\)[/tex].
Here’s a step-by-step guide to sketching the graph manually:
1. Draw the coordinate axes:
Label the [tex]\( x \)[/tex]-axis and the [tex]\( y \)[/tex]-axis.
2. Plot each point:
- For [tex]\( (-2, 100) \)[/tex], place a point far above the origin, as [tex]\( y = 100 \)[/tex] is a large value.
- For [tex]\( (-1, 10) \)[/tex], place a point above the origin at [tex]\( x = -1 \)[/tex] and [tex]\( y = 10 \)[/tex].
- For [tex]\( (0, 1) \)[/tex], place a point at the origin’s immediate right, as [tex]\( y = 1 \)[/tex].
- For [tex]\( (1, 0.1) \)[/tex], place a point slightly above the [tex]\( x \)[/tex]-axis at [tex]\( x = 1 \)[/tex].
3. Draw a smooth curve:
Connect these points with a smooth and continuous curve, ensuring that the curve decreases rapidly as [tex]\( x \)[/tex] increases and increases rapidly as [tex]\( x \)[/tex] decreases.
4. Label the graph:
Add a title “Graph of [tex]\( y = 0.1^x \)[/tex]” and label the respective axes.
The resulting graph will show an exponential decay function. The function has a steep decline on the positive side of the [tex]\( x \)[/tex]-axis and surges upward very rapidly on the negative side of the [tex]\( x \)[/tex]-axis.
First, we will calculate [tex]\( y \)[/tex] for each given value of [tex]\( x \)[/tex].
1. When [tex]\( x = -2 \)[/tex]:
[tex]\[ y = 0.1^{-2} \][/tex]
Recall that [tex]\( 0.1^{-2} = (0.1)^{-2} = \left(\frac{1}{10}\right)^{-2} = 10^2 = 100 \)[/tex].
Therefore, [tex]\( y = 100 \)[/tex].
2. When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 0.1^{-1} \][/tex]
Recall that [tex]\( 0.1^{-1} = (0.1)^{-1} = \left(\frac{1}{10}\right)^{-1} = 10 \)[/tex].
Therefore, [tex]\( y = 10 \)[/tex].
3. When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0.1^0 \][/tex]
We know any number raised to the power of 0 is 1.
Therefore, [tex]\( y = 1 \)[/tex].
4. When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 0.1^1 \][/tex]
We know that any number raised to the power of 1 is the number itself.
Therefore, [tex]\( y = 0.1 \)[/tex].
Now the table is completed as follows:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & 100 \\ \hline -1 & 10 \\ \hline 0 & 1 \\ \hline 1 & 0.1 \\ \hline \end{tabular} \][/tex]
Next, we need to graph the function [tex]\( y = 0.1^x \)[/tex].
To plot the function, we plot the points [tex]\((-2, 100)\)[/tex], [tex]\((-1, 10)\)[/tex], [tex]\((0, 1)\)[/tex], and [tex]\((1, 0.1)\)[/tex].
Here’s a step-by-step guide to sketching the graph manually:
1. Draw the coordinate axes:
Label the [tex]\( x \)[/tex]-axis and the [tex]\( y \)[/tex]-axis.
2. Plot each point:
- For [tex]\( (-2, 100) \)[/tex], place a point far above the origin, as [tex]\( y = 100 \)[/tex] is a large value.
- For [tex]\( (-1, 10) \)[/tex], place a point above the origin at [tex]\( x = -1 \)[/tex] and [tex]\( y = 10 \)[/tex].
- For [tex]\( (0, 1) \)[/tex], place a point at the origin’s immediate right, as [tex]\( y = 1 \)[/tex].
- For [tex]\( (1, 0.1) \)[/tex], place a point slightly above the [tex]\( x \)[/tex]-axis at [tex]\( x = 1 \)[/tex].
3. Draw a smooth curve:
Connect these points with a smooth and continuous curve, ensuring that the curve decreases rapidly as [tex]\( x \)[/tex] increases and increases rapidly as [tex]\( x \)[/tex] decreases.
4. Label the graph:
Add a title “Graph of [tex]\( y = 0.1^x \)[/tex]” and label the respective axes.
The resulting graph will show an exponential decay function. The function has a steep decline on the positive side of the [tex]\( x \)[/tex]-axis and surges upward very rapidly on the negative side of the [tex]\( x \)[/tex]-axis.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.